1
|
Wang C, Liu H, Li Z, Yang Q, Wang Q, Yang T, Tang D, Wang C, Liu J. Oleanolic acid 28-O-β-D-glucopyranoside: A novel therapeutic agent against ulcerative colitis via anti-inflammatory, barrier-preservation, and gut microbiota-modulation. Biomed Pharmacother 2024; 180:117534. [PMID: 39405905 DOI: 10.1016/j.biopha.2024.117534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 11/14/2024] Open
Abstract
Ulcerative colitis (UC), an incurable and recurrent inflammatory bowel disease, presents a significant threat to health and highlights the need for novel therapeutic strategies. Oleanolic acid 28-O-β-D-glucopyranoside (OAG) is a naturally occurring pentacyclic triterpenoid found in ginseng. In this study, we demonstrated that OAG exhibited remarkable anti-UC activity in LPS-induced Caco-2 cells and DSS-induced model mice. First, OAG alleviated the symptoms of UC by mitigating weight loss, reducing the DAI score, and increasing colon length. Second, the inflammatory response was inhibited after OAG intervention, evidenced decreases in the spleen coefficient, cytokine levels, and inflammatory cell infiltration in colon tissue. Thirdly, OAG also enhanced intestinal epithelial barrier function, as evidenced by elevated TEER values, increased expression of tight junction proteins, diminished bacterial translocation, and maintained intact ultrastructure of colonic mucosal cells. Notably, compared with 5-aminosalicylic acid, OAG demonstrated superior efficacy in enhancing mucosal barrier function. Fourth, OAG increased microbial diversity, promoted the abundance of beneficial bacteria, reduced the abundance of harmful bacteria, and rebalanced the gut microbiome. Finally, the PI3K-AKT and MAPK signaling pathways were identified as crucial mechanisms underlying the therapeutic effects of OAG against UC through multi-omics. In summary, we identified OAG as a novel therapeutic agent against UC, demonstrating anti-inflammatory, barrier-preserving, and gut microbiota-modulating effects, highlighting its promising potential as a candidate UC drug.
Collapse
Affiliation(s)
- Caixia Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Hanlin Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Zhuoqiao Li
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Qingya Yang
- Department of Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Qianyun Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Ting Yang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Daohao Tang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Cuizhu Wang
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
2
|
Rutkoski R, Arguelles AJ, Huang Q, Nagorny P. Development of Recyclable Polystyrene-Supported Phosphonic Acid Resins for Carbohydrate Immobilization and Glycosylation. J Org Chem 2023; 88:16467-16484. [PMID: 37944478 DOI: 10.1021/acs.joc.3c01985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
This article describes the development of a recyclable polystyrene-based phosphonic acid resin and its use for the synthesis of immobilized glycosyl phosphonate donors and subsequent glycosylation reaction. This solid support was generated on a decagram scale from the commercially available Merrifield resin and subsequently functionalized via two different methods into eight different glycosylphosphonates. The resultant glycosylphosphonate-containing resins were obtained in 59-96% yields and were found to be bench-stable at room temperature. These donors could be activated using trifluoroborane etherate at 80 °C to react with various alcohol- and thiol-based acceptors to provide 17 different glycosides in good-to-excellent yields (53-98%). In addition, it was demonstrated that glycosylated resin could be recovered and recycled multiple times to regenerate immobilized glycosylphosphonate donors and could be subjected to on-resin glycan elongation.
Collapse
Affiliation(s)
- Ryan Rutkoski
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Alonso J Arguelles
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Qingqin Huang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Pavel Nagorny
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Abstract
Saponins, as secondary metabolites in terrestrial plants and marine invertebrate, constitute one of the largest families of natural products. The long history of folk medicinal applications of saponins makes them attractive candidates for innovative drug design and development. Chemical synthesis has become a practical alternative to the availability of the natural saponins and their modified analogs, so as to facilitate SAR studies and the discovery of optimal structures for clinical applications. The recent achievements in the synthesis of these complex saponins reflect the advancements of both steroid/triterpene chemistry and carbohydrate chemistry. This chapter provides an updated review on the chemical synthesis of natural saponins, covering the literature from 2014 to 2020.
Collapse
Affiliation(s)
- Peng Xu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China; State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| | - Biao Yu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China; State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
4
|
Shirahata T, Miyaishi R, Kitazoe T, Saito M, Taneoka Y, Hidaka S, Yokoyama M, Tojima T, Katsumi T, Hirata N, Nishino T, Kaji E, Yamada H, Nagai T, Kiyohara H, Nakamori S, Konishi N, Kobayashi Y. Preparation of Tenuifolin from Polygala senega L. Root Using a Hydrolytic Continuous Flow System under High-Temperature, High-Pressure Conditions. J Org Chem 2021; 86:16268-16277. [PMID: 34730980 DOI: 10.1021/acs.joc.1c01125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An improved process for preparing tenuifolin (presenegenin 3-β-d-glucopyranoside) from the root of Polygala senega L. was developed. A crude saponin mixture extracted from P. senega was subjected to hydrolysis, and the reactivity of compounds in the extract was controlled by utilizing the combination of a flow reactor and experimental design. In addition, column chromatography with HP 20, a synthetic polystyrenic adsorbent, allowed the gram-scale preparation of tenuifolin in a continuous manner with fewer steps. This approach shortens the total time required for gram-scale preparation from 16 to 5 h in a continuous manner while improving the yield from 0.59% to 2.08% (w/w).
Collapse
Affiliation(s)
- Tatsuya Shirahata
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Rintaro Miyaishi
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tatsuki Kitazoe
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masaya Saito
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yuki Taneoka
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Shuhei Hidaka
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masaki Yokoyama
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takayori Tojima
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tatsuya Katsumi
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Nozomu Hirata
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takashi Nishino
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Eisuke Kaji
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Haruki Yamada
- O̅mura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Takayuki Nagai
- O̅mura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Hiroaki Kiyohara
- O̅mura Satoshi Memorial Institute and Graduate School of Infection Control Sciences, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Shunsuke Nakamori
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Naruki Konishi
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yoshinori Kobayashi
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
5
|
Konishi N, Shirahata T, Yoshida Y, Sato N, Kaji E, Kobayashi Y. Efficient synthesis of diverse C-3 monodesmosidic saponins by a continuous microfluidic glycosylation/batch deprotection method. Carbohydr Res 2021; 510:108437. [PMID: 34597978 DOI: 10.1016/j.carres.2021.108437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 11/18/2022]
Abstract
Triterpene and steroid saponins have various pharmacological activities but the synthesis of C-3 monodesmosidic saponins remains challenging. Herein, a series of C-3 glycosyl monodesmosidic saponins was synthesized via the microfluidic glycosylation of triterpenoids or steroids at the C-3 position, without the formation of orthoester byproducts, and subsequent deprotection of the benzoyl (Bz) group. This microfluidic glycosylation/batch deprotection sequence enabled the efficient synthesis of C-3 saponins with fewer purification steps and a shorter reaction time than conventional batch synthesis and stepwise microfluidic glycosylation. Furthermore, this system minimized the consumption of the imidate donor. Using this reaction system, 18 different C-3 saponins and 13 different C-28-benzyl-C-3 saponins, including 8 new compounds, were synthesized from various sugars and triterpenes or steroids. Our synthetic approach is expected to be suitable for further expanding the C-3 saponin library for pharmacological studies.
Collapse
Affiliation(s)
- Naruki Konishi
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tatsuya Shirahata
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Yuki Yoshida
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Noriko Sato
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Eisuke Kaji
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Yoshinori Kobayashi
- School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| |
Collapse
|
6
|
Karak M, Haldar A, Torikai K. Current Tools for Chemical Glycosylation: Where Are We Now? TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2014.7e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | | | - Kohei Torikai
- Faculty of Chemistry, National University of Uzbekistan named after Mirzo Ulugbek
| |
Collapse
|
7
|
Karak M, Haldar A, Torikai K. Current Tools for Chemical Glycosylation: Where Are We Now? TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2014.7j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | | | - Kohei Torikai
- Department of Chemistry, Faculty of Science, Kyushu University
| |
Collapse
|
8
|
Wang L, Kong H, Jin M, Li X, Stoika R, Lin H, Liu K. Synthesis of disaccharide modified berberine derivatives and their anti-diabetic investigation in zebrafish using a fluorescence-based technology. Org Biomol Chem 2021; 18:3563-3574. [PMID: 32347284 DOI: 10.1039/d0ob00327a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Berberine is a naturally occurring isoquinoline alkaloid and has been used as an important functional food additive in China due to its various pharmacological activities. Berberine exhibits great potential for developing anti-diabetic agents against type 2 diabetes mellitus (T2DM), as it can reduce the blood glucose level in many animal models. However, the low anti-diabetic activity and poor bioavailability of berberine (below 5%) by oral administration significantly limit its practical applications. To solve these problems, this article focuses on the structural modification of berberine using some disaccharide groups, because the carbohydrate moiety has been proved to improve the bioavailability and enhance the receptor-binding affinity of drugs. Anti-diabetic investigation of the synthesized compounds was performed in a zebrafish model using a fluorescently labelled glucose analog 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-d-glucose (2-NBDG) as a glucose tracker. The results indicated that the modification of berberine with carbohydrate groups could give derivatives with improved anti-diabetic activity, in particular the diglucose modified berberine derivative 1 which could dramatically promote the uptake of 2-NBDG in both zebrafish larvae and their eyes even at very low concentrations. Furthermore, the fluorescence-based anti-diabetic investigation method in zebrafish shows great potential for anti-diabetic drug screening.
Collapse
Affiliation(s)
- Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong Province, China.
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
Personalized cancer vaccines (PCVs) are reinvigorating vaccine strategies in cancer immunotherapy. In contrast to adoptive T-cell therapy and checkpoint blockade, the PCV strategy modulates the innate and adaptive immune systems with broader activation to redeploy antitumor immunity with individualized tumor-specific antigens (neoantigens). Following a sequential scheme of tumor biopsy, mutation analysis, and epitope prediction, the administration of neoantigens with synthetic long peptide (SLP) or mRNA formulations dramatically improves the population and activity of antigen-specific CD4+ and CD8+ T cells. Despite the promising prospect of PCVs, there is still great potential for optimizing prevaccination procedures and vaccine potency. In particular, the arduous development of tumor-associated antigen (TAA)-based vaccines provides valuable experience and rational principles for augmenting vaccine potency which is expected to advance PCV through the design of adjuvants, delivery systems, and immunosuppressive tumor microenvironment (TME) reversion since current personalized vaccination simply admixes antigens with adjuvants. Considering the broader application of TAA-based vaccine design, these two strategies complement each other and can lead to both personalized and universal therapeutic methods. Chemical strategies provide vast opportunities for (1) exploring novel adjuvants, including synthetic molecules and materials with optimizable activity, (2) constructing efficient and precise delivery systems to avoid systemic diffusion, improve biosafety, target secondary lymphoid organs, and enhance antigen presentation, and (3) combining bioengineering methods to innovate improvements in conventional vaccination, "smartly" re-educate the TME, and modulate antitumor immunity. As chemical strategies have proven versatility, reliability, and universality in the design of T cell- and B cell-based antitumor vaccines, the union of such numerous chemical methods in vaccine construction is expected to provide new vigor and vitality in cancer treatment.
Collapse
Affiliation(s)
- Wen-Hao Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, 100084 Beijing, China.,Beijing Institute for Brain Disorders, 100069 Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, 100084 Beijing, China
| |
Collapse
|
10
|
Nakamura R, Shirahata T, Konishi N, Takanezawa Y, Sone Y, Uraguchi S, Kobayashi Y, Kiyono M. Oleanolic acid 3-glucoside, a synthetic oleanane-type saponin, alleviates methylmercury toxicity in vitro and in vivo. Toxicology 2019; 417:15-22. [PMID: 30776458 DOI: 10.1016/j.tox.2019.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 01/20/2019] [Accepted: 02/11/2019] [Indexed: 02/07/2023]
Abstract
Methylmercury (MeHg) is one of the most toxic environmental pollutants, presenting a serious health hazard worldwide. In this study, we examined the potential of derivatives of oleanolic acid (OA), such as OA 3-glucoside, OA 28-glucoside, and OA 3,28-diglucoside, to mitigate MeHg toxicity in vitro and in vivo. We found that OA 3-glucoside suppressed the cellular MeHg uptake by 63.4% compared with that of the control and improved the cell viability from 75.4% to 107.9% upon exposure to cytotoxic MeHg in Caco-2 cells. To verify the anti-MeHg activity of OA 3-glucoside, mice were orally administered MeHg (0, 1.0, or 5.0 mg kg-1·d-1), with or without OA 3-glucoside, and then mercury accumulation was measured in various organs of the mice. The mice co-treated with MeHg and OA 3-glucoside showed significantly lower mercury content in organs such as the cerebrum, cerebellum, liver, kidney, and spleen, with 83.1%, 68.7%, 71.7%, 82.1%, and 18.2% of those in the OA 3-glucoside-untreated group, respectively. This suggested OA 3-glucoside had the potential as an anti-MeHg compound, owing to its ability to suppress the distribution of MeHg into organs. Supporting this hypothesis, the mice treated with MeHg and OA 3-glucoside showed a tendency to survive one day longer than the control mice. Our findings suggest OA 3-glucoside administration alleviates the toxicity of MeHg by suppressing MeHg accumulation in organs.
Collapse
Affiliation(s)
- Ryosuke Nakamura
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Tatsuya Shirahata
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Naruki Konishi
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yasukazu Takanezawa
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yuka Sone
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Shimpei Uraguchi
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Yoshinori Kobayashi
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan
| | - Masako Kiyono
- School of Pharmacy, Kitasato University, 5-9-1, Shirokane, Minato-ku, Tokyo 108-8641, Japan.
| |
Collapse
|
11
|
Zhang T, Li X, Song H, Yao S. Ionic liquid-assisted catalysis for glycosidation of two triterpenoid sapogenins. NEW J CHEM 2019. [DOI: 10.1039/c9nj04271g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In order to study the universality of ionic liquids-assisted glycosidation and explore their catalytic behaviors together with potential, oleanolic acid and ursolic acid were selected to establish catalytic system as typical triterpene sapogenins.
Collapse
Affiliation(s)
- Tenghe Zhang
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Xinlu Li
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Hang Song
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| | - Shun Yao
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- People's Republic of China
| |
Collapse
|
12
|
Katayama S, Koge T, Katsuragi S, Akai S, Oishi T. Flow Synthesis of (3 R)- and (3 S)-( E)-1-Iodohexa-1,5-dien-3-ol: Chiral Building Blocks for Natural Product Synthesis. CHEM LETT 2018. [DOI: 10.1246/cl.180475] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sota Katayama
- Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tomoyuki Koge
- Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Satoko Katsuragi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shuji Akai
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tohru Oishi
- Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|