1
|
Jellali H, Amri N, Mukhrish YE, Al Nasr IS, Koko WS, Khan TA, Deniau E, Sauthier M, Ghalla H, Hamdi N. Copper-Catalyzed Asymmetric Hydroboration Reaction of Novel Methylene Isoindolinone Compounds through Microwave Irradiation and Their Antileishmanial and Antitoxoplasma Activities. ACS OMEGA 2023; 8:23067-23077. [PMID: 37396287 PMCID: PMC10308578 DOI: 10.1021/acsomega.3c02362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/16/2023] [Indexed: 07/04/2023]
Abstract
The aim of this study was devoted into molecular docking calculations to discover the potential antileishmania and antitoxoplasma activities of newly synthesized compounds obtained by applying a practical and simple method under microwave irradiation. All these compounds were tested in vitro for their biological activity against Leishmania major promastigotes, amastigotes, and Toxoplasma gondii tachyzoites. Compounds 2a, 5a, and 5e were the most active against both L. major promastigotes and amastigotes, with IC50 values of less than 0.4 μM mL-1. Compounds 2c, 2e, 2h, and 5d had a strong antitoxoplasma activity of less than 2.1 μM mL-1 against T. gondii. We can conclude that aromatic methyleneisoindolinones are potently active against both L. major and T. gondii. Further studies for mode of action evaluation are recommended. Compounds 5c and 5b are the best drug candidates for antileishmania and antitoxoplasma due to their SI values being over 13. The docking studies of compounds 2a-h and 5a-e against pteridine reductase 1 and T. gondii enoyl acyl carrier protein reductase reveal that compound 5e may be an effective antileishmanial and antitoxoplasma drug discovery initiative.
Collapse
Affiliation(s)
- Hamida Jellali
- Research
Laboratory of Environmental Sciences and Technologies (LR16ES09),
Higher Institute of Environmental Sciences and Technology, University of Carthage, Hammam-Lif, Tunis 2078, Tunisia
| | - Nasser Amri
- Department
of Chemistry, Faculty of Science, Jazan
University, Jazan 45142, Saudi Arabia
| | - Yousef E. Mukhrish
- Department
of Chemistry, Faculty of Science, Jazan
University, Jazan 45142, Saudi Arabia
| | - Ibrahim S. Al Nasr
- Department
of Biology, College of Science and Arts, Qassim University, Unaizah 51911, Saudi Arabia
- Department
of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Waleed S. Koko
- Department
of Science Laboratories, College of Science and Arts, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Tariq A. Khan
- Department
of Clinical Nutrition, College of Applied Health Sciences, Qassim University, Ar Rass 51921, Saudi Arabia
| | - Eric Deniau
- University
of Lille, CNRS, Centrale Lille, Université Artois, UMR 8181—UCCS—Unité
de Catalyze et Chimie du Solide, Lille 59000, France
| | - Mathieu Sauthier
- University
of Lille, CNRS, Centrale Lille, Université Artois, UMR 8181—UCCS—Unité
de Catalyze et Chimie du Solide, Lille 59000, France
| | - Houcine Ghalla
- Quantum
and Statistical Physics Laboratory, Faculty of Sciences, University of Monastir, Monastir 5000, Tunisia
| | - Naceur Hamdi
- Department
of Chemistry, College of Science and Arts, Qassim University, Ar Rass 51921 Saudi Arabia
| |
Collapse
|
2
|
Lin L, Zhang XJ, Xu X, Zhao Y, Shi Z. Ru 3 (CO) 12 -Catalyzed Modular Assembly of Hemilabile Ligands by C-H Activation of Phosphines with Isocyanates. Angew Chem Int Ed Engl 2023; 62:e202214584. [PMID: 36479789 DOI: 10.1002/anie.202214584] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/17/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Hemilabile ligands have been applied extensively in transition metal catalysis, but preparations of these molecules typically require multistep synthesis. Here, modular assembly of diverse phosphine-amide ligands, including related axially chiral compounds, is first reported through ruthenium-catalyzed C-H activation of phosphines with isocyanate directed by phosphorus(III) atoms. High reactivity and regioselectivity can be obtained by using a Ru3 (CO)12 catalyst with a mono-N-protected amino acid ligand. This transformation significantly expands the pool of phosphine-amide ligands, some of which have shown excellent efficiency for asymmetric catalysis. More broadly, the discovery constitutes a proof of principle for facile construction of hemilabile ligands directly from the parent monodentate phosphines by C-H activation with ideal atom, step and redox economy. Several dinuclear ruthenium complexes were characterized by single-crystal X-ray diffraction analysis revealing the key mechanistic features of this transformation.
Collapse
Affiliation(s)
- Lin Lin
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Xue-Jun Zhang
- Department of Orthopedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Xinyu Xu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
3
|
Highly efficient synthesis of indoline via palladium catalyzed C–H amination of C(sp2)–H bond using tert-butyl peroxybenzoate as an oxidant. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Halder P, Talukdar V, Iqubal A, Das P. Palladium-Catalyzed Aminocarbonylation of Isoquinolines Utilizing Chloroform-COware Chemistry. J Org Chem 2022; 87:13965-13979. [PMID: 36217780 DOI: 10.1021/acs.joc.2c01629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The carbonyl group forms an integral part of several drug molecules and materials; hence, synthesis of carbonylated compounds remains an intriguing area of research for synthetic and medicinal chemists. Handling toxic CO gas has several limitations; thus, using safe and effective techniques for in or ex situ generation of carbon monoxide from nontoxic and cheap precursors is highly desirable. Among several precursors that have been explored for the generation of CO gas, chloroform can prove to be a promising CO surrogate due to its cost-effectiveness and ready availability. However, the one-pot chloroform-based carbonylation reaction requires strong basic conditions for hydrolysis of chloroform that may affect functional group tolerability of substrates and scale-up reactions. These limitations can be overcome by a two-chamber reactor (COware) that can be utilized for ex situ CO generation through hydrolysis of chloroform in one chamber and facilitating safe carbonylation reactions in another chamber under mild conditions. The versatility of this "Chloroform-COware" technique is explored through palladium-catalyzed aminocarbonylation of medicinally relevant heterocyclic cores, viz., isoquinoline and quinoline.
Collapse
Affiliation(s)
- Pallabi Halder
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, India
| | - Vishal Talukdar
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, India
| | - Ashif Iqubal
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, India
| | - Parthasarathi Das
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad-826004, India
| |
Collapse
|
5
|
Mor S, Khatri M. Convenient synthesis of benzothiazinoisoindol-11-ones and benzoindenothiazin-11-ones, and antimicrobial testing thereof. Mol Divers 2022:10.1007/s11030-022-10483-9. [PMID: 35922654 DOI: 10.1007/s11030-022-10483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022]
Abstract
Benzo[5,6][1,4]thiazino[3,4-a]isoindol-11-ones 5a-t and benzo[b]indeno[1,2-e][1,4]thiazin-11(10aH)-ones 6a-e were synthesized conveniently via cyclocondensation of 2-bromo-2-(2/3-substitutedphenyl)-1H-indene-1,3(2H)-diones and 2-aminobenzenethiols in freshly dried ethanol with 70-85% yields. The synthesized derivatives were well characterized by employing different spectral techniques (FTIR, 1H & 13C NMR and HRMS) and X-ray crystallographic analysis. Further, all the reported compounds were tested for their antibacterial and antifungal activities using Ciprofloxacin and Fluconazole as standard drugs, respectively. The results of antimicrobial evaluation revealed that compounds 5o and 5t displayed remarkable inhibitory activity against B. subtilis, S. aureus, P. aeruginosa and A. niger with MIC values in the range of 0.0141-0.0283 µmol/mL, whereas 5j was found active against E. coli and C. albicans with MIC values of 0.0286 µmol/mL and 0.0143 µmol/mL, respectively. Additionally, among all the benzo[b]indeno[1,2-e][1,4]thiazin-11(10aH)-ones, 6c exhibited excellent inhibition against all the tested bacterial and fungal strains with MIC values ranging from 0.0143 to 0.1145 µmol/mL. Structure activity relationships were also established for all the tested benzo[5,6][1,4]thiazino[3,4-a]isoindol-11-ones 5a-t.
Collapse
Affiliation(s)
- Satbir Mor
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India.
| | - Mohini Khatri
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| |
Collapse
|
6
|
Mishra DR, Panda BS, Nayak S, Panda J, Mohapatra S. Recent Advances in the Synthesis of 5‐Membered
N
‐Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deepak R. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bhabani S. Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
7
|
Qin J, Li Z, Cao Y, Xie Y, Su W. A Site‐Selective C−N Bond Formation of 2,4‐Dichloro‐5
H
‐pyrano[2,3‐
d
]pyrimidines and Amide. ChemistrySelect 2021. [DOI: 10.1002/slct.202102824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jinjing Qin
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Zhenhua Li
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Yingyan Cao
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Yuanyuan Xie
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| | - Weike Su
- College of Pharmaceutical Science Zhejiang University of Technology Hangzhou Zhejiang 310014 China
| |
Collapse
|
8
|
Altalhi WA, McKay AI, Spyrou B, Canty AJ, Donnelly PS, O'Hair RA. Examination of N,N-dimethylbenzylamine as a substrate for ruthenium-catalysed C-H (thio)amidation: A mass spectrometry and DFT directed study. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Yang H, Zhang J, Chen Z, Wu XF. TFBen (Benzene-1,3,5-triyl triformate): A Powerful and Versatile CO Surrogate. CHEM REC 2021; 22:e202100220. [PMID: 34591367 DOI: 10.1002/tcr.202100220] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022]
Abstract
Carbonylative reactions by the using of CO surrogates constitute a facile avenue for the assembly of valuable carbonyl-containing compounds due to the colorless, toxic, flammable, and not easy-handing character of carbon monoxide gas. Recent advances in the carbonylative transformations with TFBen (benzene-1,3,5-triyl triformate) as a safe and convenient CO precursor are systematically summarized and discussed, which can be divided into three parts based on the patterns of the obtained products. This Review focuses on the discussion of the application of TFBen in carbonylative synthesis of various carbonyl-containing compounds.
Collapse
Affiliation(s)
- Hefei Yang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Jiajun Zhang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Zhengkai Chen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, People's Republic of China
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Str. 29a, 18059, Rostock, Germany
| |
Collapse
|
10
|
Murali K, Machado LA, Carvalho RL, Pedrosa LF, Mukherjee R, Da Silva Júnior EN, Maiti D. Decoding Directing Groups and Their Pivotal Role in C-H Activation. Chemistry 2021; 27:12453-12508. [PMID: 34038596 DOI: 10.1002/chem.202101004] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Synthetic organic chemistry has witnessed a plethora of functionalization and defunctionalization strategies. In this regard, C-H functionalization has been at the forefront due to the multifarious applications in the development of simple to complex molecular architectures and holds a brilliant prospect in drug development and discovery. Despite been explored tremendously by chemists, this functionalization strategy still enjoys the employment of novel metal catalysts as well metal-free organic ligands. Moreover, the switch to photo- and electrochemistry has widened our understanding of the alternative pathways via which a reaction can proceed and these strategies have garnered prominence when applied to C-H activation. Synthetic chemists have been foraging for new directing groups and templates for the selective activation of C-H bonds from a myriad of carbon-hydrogen bonds in aromatic as well as aliphatic systems. As a matter of fact, by varying the templates and directing groups, scientists found the answer to the challenge of distal C-H bond activation which remained an obstacle for a very long time. These templates have been frequently harnessed for selectively activating C-H bonds of natural products, drugs, and macromolecules decorated with multiple C-H bonds. This itself was a challenge before the commencement of this field as functionalization of a site other than the targeted site could modify and hamper the biological activity of the pharmacophore. Total synthesis and pharmacophore development often faces the difficulty of superfluous reaction steps towards selective functionalization. This obstacle has been solved by late-stage functionalization simply by harnessing C-H bond activation. Moreover, green chemistry and metal-free reaction conditions have seen light in the past few decades due to the rising concern about environmental issues. Therefore, metal-free catalysts or the usage of non-toxic metals have been recently showcased in a number of elegant works. Also, research groups across the world are developing rational strategies for directing group free or non-directed protocols that are just guided by ligands. This review encapsulates the research works pertinent to C-H bond activation and discusses the science devoted to it at the fundamental level. This review gives the readers a broad understanding of how these strategies work, the execution of various metal catalysts, and directing groups. This not only helps a budding scientist towards the commencement of his/her research but also helps a matured mind searching out for selective functionalization. A detailed picture of this field and its progress with time has been portrayed in lucid scientific language with a motive to inculcate and educate scientific minds about this beautiful strategy with an overview of the most relevant and significant works of this era. The unique trait of this review is the detailed description and classification of various directing groups and their utility over a wide substrate scope. This allows an experimental chemist to understand the applicability of this domain and employ it over any targeted substrate.
Collapse
Affiliation(s)
- Karunanidhi Murali
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Luana A Machado
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil.,Department of Chemistry, Fluminense Federal University, Niteroi, 24020-141, RJ, Brazil
| | - Renato L Carvalho
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, 31270-901, MG, Brazil
| | - Leandro F Pedrosa
- Department of Chemistry, Fluminense Federal University, Niteroi, 24020-141, RJ, Brazil
| | - Rishav Mukherjee
- Department of Chemistry IIT Bombay, Powai, Mumbai, 400076, India
| | | | - Debabrata Maiti
- Department of Chemistry IIT Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
11
|
Liu J, Yang Z, Jiang J, Zeng Q, Zheng L, Liu ZQ. Rhodium(III)-Catalyzed Oxidative Cyclization of Oxazolines with Cyclopropanols: Synthesis of Isoindolinones. Org Lett 2021; 23:5927-5931. [PMID: 34236196 DOI: 10.1021/acs.orglett.1c02031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The synthesis of C3-substituted isoindolin-1-ones from oxazolines and cyclopropanols has been achieved with oxazoline as a bifunctional nucleophilic directing group. The reaction proceeds by the cleavage of three chemical bonds and allows the formation of three new chemical bonds, a C-N bond, a C-C bond, and a C-O bond, in a single step.
Collapse
Affiliation(s)
- Jidan Liu
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, P. R. China
| | - Zhenke Yang
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, P. R. China
| | - Jinyuan Jiang
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, P. R. China
| | - Qiaohai Zeng
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, P. R. China
| | - Liyao Zheng
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering, Institute of Clean Energy and Materials, Guangzhou Key Laboratory for Clean Energy and Materials, Guangzhou University, Guangzhou 510006, P. R. China
| |
Collapse
|
12
|
Chen Y, Huang Z, Dai C, Yang S, Shi DQ, Zhao Y. Palladium-Catalyzed Isoquinoline Synthesis by Tandem C-H Allylation and Oxidative Cyclization of Benzylamines with Allyl Acetate. Org Lett 2021; 23:4209-4213. [PMID: 33999646 DOI: 10.1021/acs.orglett.1c01153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel approach to synthesize 3-methylisoquinolines via a one-pot, two-step, palladium(II)-catalyzed tandem C-H allylation/intermolecular amination and aromatization is reported. A wide series of 3-methylisoquinoline derivatives were obtained directly using this method in moderate to good yields, and we highlight the synthetic importance of this new transformation.
Collapse
Affiliation(s)
- Yujie Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zhibin Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Chenyang Dai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Shan Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Da-Qing Shi
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, P.R.China
| |
Collapse
|
13
|
Savela R, Méndez‐Gálvez C. Isoindolinone Synthesis via One-Pot Type Transition Metal Catalyzed C-C Bond Forming Reactions. Chemistry 2021; 27:5344-5378. [PMID: 33125790 PMCID: PMC8048987 DOI: 10.1002/chem.202004375] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/30/2020] [Indexed: 11/06/2022]
Abstract
Isoindolinone structure is an important privileged scaffold found in a large variety of naturally occurring as well as synthetic, biologically and pharmaceutically active compounds. Owing to its crucial role in a number of applications, the synthetic methodologies for accessing this heterocyclic skeleton have received significant attention during the past decade. In general, the synthetic strategies can be divided into two categories: First, direct utilization of phthalimides or phthalimidines as starting materials for the synthesis of isoindolinones; and second, construction of the lactam and/or aromatic rings by different catalytic methods, including C-H activation, cross-coupling, carbonylation, condensation, addition and formal cycloaddition reactions. Especially in the last mentioned, utilization of transition metal catalysts provides access to a broad range of substituted isoindolinones. Herein, the recent advances (2010-2020) in transition metal catalyzed synthetic methodologies via formation of new C-C bonds for isoindolinones are reviewed.
Collapse
Affiliation(s)
- Risto Savela
- Johan Gadolin Process Chemistry CentreLaboratory of Molecular Science and TechnologyÅbo Akademi UniversityBiskopsgatan 820500TurkuFinland
| | - Carolina Méndez‐Gálvez
- Johan Gadolin Process Chemistry CentreLaboratory of Molecular Science and TechnologyÅbo Akademi UniversityBiskopsgatan 820500TurkuFinland
| |
Collapse
|
14
|
Karishma P, Gogia A, Mandal SK, Sakhuja R. Ruthenium Catalyzed C−H Amidation and Carbocyclization using Isocyanates: An Access to Amidated 2‐phenylphthalazine‐1,4‐diones and Indazolo[1,2‐
b
]phthalazine‐triones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pidiyara Karishma
- Department of Chemistry Birla Institute of Technology and Science Pilani Rajasthan 333031 India
| | - Alisha Gogia
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali Sector 81 SAS Nagar, Manuali P.O. Mohali Punjab 140306 India
| | - Sanjay K. Mandal
- Department of Chemical Sciences Indian Institute of Science Education and Research Mohali Sector 81 SAS Nagar, Manuali P.O. Mohali Punjab 140306 India
| | - Rajeev Sakhuja
- Department of Chemistry Birla Institute of Technology and Science Pilani Rajasthan 333031 India
| |
Collapse
|
15
|
Choi JH, Do Kim H, Kang JY, Jeong T, Ghosh P, Kim IS. Ruthenium(
II
)‐Catalyzed CH/NH Carbonylative Cyclization of
2‐Aryl
Quinazolinones with Isocyanates as
CO
Surrogates. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12228] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jin Ho Choi
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Hak Do Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Ju Young Kang
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Taejoo Jeong
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Prithwish Ghosh
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| | - In Su Kim
- School of Pharmacy Sungkyunkwan University Suwon 16419 Republic of Korea
| |
Collapse
|
16
|
Zhu WQ, Fang YC, Han WY, Li F, Yang MG, Chen YZ. Palladium-catalyzed [2 + 2 + 1] annulation: access to chromone fused cyclopentanones with cyclopropenone as the CO source. Org Chem Front 2021. [DOI: 10.1039/d1qo00222h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A variety of chromone fused cyclopentanones are efficiently generated in good to high yields via palladium-catalyzed [2 + 2 + 1] annulation, in which cyclopropenone was utilized for the first time as the sole CO surrogate in the carbonylation process.
Collapse
Affiliation(s)
- Wen-Qing Zhu
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Yu-Chen Fang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563006
| | - Fei Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563006
| | - Min-Ge Yang
- Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries
- School of Environmental and Chemical Engineering
- Xi'an Polytechnic University
- Xi'an
- P. R. China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province
- Generic Drug Research Center of Guizhou Province
- School of Pharmacy
- Zunyi Medical University
- Zunyi 563006
| |
Collapse
|
17
|
Carvalho RL, Almeida RG, Murali K, Machado LA, Pedrosa LF, Dolui P, Maiti D, da Silva Júnior EN. Removal and modification of directing groups used in metal-catalyzed C–H functionalization: the magical step of conversion into ‘conventional’ functional groups. Org Biomol Chem 2021; 19:525-547. [DOI: 10.1039/d0ob02232b] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This feature review is focused on recent approaches for removing versatile directing groups.
Collapse
Affiliation(s)
- Renato L. Carvalho
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | - Renata G. Almeida
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | - Karunanidhi Murali
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | - Luana A. Machado
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | | | - Pravas Dolui
- Department of Chemistry
- IIT Bombay
- Mumbai 400076
- India
| | | | | |
Collapse
|
18
|
Singh P, Arulananda Babu S, Aggarwal Y, Patel P. Pd(II)‐catalyzed, Picolinamide‐aided sp
2
γ−C−H Functionalization of Phenylglycinol: Access to γ−C−H Arylated, Alkylated and Halogenated Phenylglycinol Scaffolds. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000560] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Prabhakar Singh
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| | - Srinivasarao Arulananda Babu
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| | - Yashika Aggarwal
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| | - Pooja Patel
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| |
Collapse
|
19
|
Ghosh K, Ghosh A, Mukherjee K, Rit RK, Sahoo AK. Sulfoximine-Assisted Unsymmetrical Twofold C-H Functionalization of Arenes. J Org Chem 2020; 85:8618-8626. [PMID: 32519873 DOI: 10.1021/acs.joc.0c01010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An unprecedented ruthenium (Ru)-catalyzed twofold unsymmetrical annulation of 3-O/N-allyl benzoic acid derivatives with isocyanates for the construction of dihydro-furan/indole-fused phthalimide scaffolds is discussed. This double-unsymmetrical functionalization of both o,o'-C-H bonds of arene moiety is explicitly viable under the influence of methylphenyl sulfoximine directing group constructing three different [C-C/C-C(O)/N-C(O)] bonds under a single catalytic system. A broad scope with all six-carbon-substituted arene motifs, control experiments, and gram-scale synthesis make the synthetic model viable and significant.
Collapse
Affiliation(s)
- Koushik Ghosh
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Arghadip Ghosh
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Kallol Mukherjee
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Raja K Rit
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
20
|
Affiliation(s)
- Zhiping Yin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jian-Xing Xu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
| |
Collapse
|
21
|
Affiliation(s)
- Quan Zheng
- College of Pharmaceutical Science and Institute of Drug Development & Chemical BiologyZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chen‐Fu Liu
- College of Pharmaceutical ScienceGannan Medical University Ganzhou 341000 People's Republic of China
| | - Jie Chen
- College of Pharmaceutical Science and Institute of Drug Development & Chemical BiologyZhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Guo‐Wu Rao
- College of Pharmaceutical Science and Institute of Drug Development & Chemical BiologyZhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
22
|
Wei W, Chen Z, Lin Y, Chen R, Wang Q, Wu Q, Liu S, Yan M, Zhang X. Synthesis of Isoindolinones through Intramolecular Amidation of
ortho
‐Vinyl Benzamides. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Wen‐tao Wei
- Institute of Clinical PharmacologyScience and Technology Innovation CenterGuangzhou University of Chinese Medicine Guangzhou 510405 People's Republic of China
| | - Zhen‐yu Chen
- Institute of Drug Synthesis and Pharmaceutical ProcessSchool of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Yong‐lu Lin
- Institute of Clinical PharmacologyScience and Technology Innovation CenterGuangzhou University of Chinese Medicine Guangzhou 510405 People's Republic of China
- School of Pharmaceutical ScienceGuangzhou University of Chinese Medicine Guangzhou 510006 People's Republic of China
| | - Ri‐xing Chen
- School of Pharmaceutical ScienceGuangzhou University of Chinese Medicine Guangzhou 510006 People's Republic of China
| | - Qi Wang
- Institute of Clinical PharmacologyScience and Technology Innovation CenterGuangzhou University of Chinese Medicine Guangzhou 510405 People's Republic of China
| | - Qing‐guang Wu
- School of Pharmaceutical ScienceGuangzhou University of Chinese Medicine Guangzhou 510006 People's Republic of China
| | - Si‐jun Liu
- School of Pharmaceutical ScienceGuangzhou University of Chinese Medicine Guangzhou 510006 People's Republic of China
| | - Ming Yan
- Institute of Drug Synthesis and Pharmaceutical ProcessSchool of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Xue‐jing Zhang
- Institute of Drug Synthesis and Pharmaceutical ProcessSchool of Pharmaceutical SciencesSun Yat-sen University Guangzhou 510006 People's Republic of China
| |
Collapse
|
23
|
Lukasevics L, Cizikovs A, Grigorjeva L. Synthesis of 3-Hydroxymethyl Isoindolinones via Cobalt-Catalyzed C(sp 2)-H Carbonylation of Phenylglycinol Derivatives. Org Lett 2020; 22:2720-2723. [PMID: 32181664 DOI: 10.1021/acs.orglett.0c00672] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An efficient method for the synthesis of 3-hydroxymethyl isoindolinones via cobalt-catalyzed C(sp2)-H carbonylation of phenylglycinol derivatives using picolinamide as a traceless directing group is demonstrated. The reaction proceeds in the presence of a commercially available cobalt(II) tetramethylheptanedionate catalyst and employs DIAD as a "CO" surrogate. This synthetic route offers a broad substrate scope, excellent regioselectivity, and full preservation of the original stereochemistry. Besides, the developed method provides a pathway for accessing valuable enantiopure 3-substituted isoindolinone derivatives.
Collapse
Affiliation(s)
- Lukass Lukasevics
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Aleksandrs Cizikovs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| | - Liene Grigorjeva
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV-1006 Riga, Latvia
| |
Collapse
|
24
|
Rej S, Ano Y, Chatani N. Bidentate Directing Groups: An Efficient Tool in C-H Bond Functionalization Chemistry for the Expedient Construction of C-C Bonds. Chem Rev 2020; 120:1788-1887. [PMID: 31904219 DOI: 10.1021/acs.chemrev.9b00495] [Citation(s) in RCA: 606] [Impact Index Per Article: 121.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the past decades, synthetic organic chemistry discovered that directing group assisted C-H activation is a key tool for the expedient and siteselective construction of C-C bonds. Among the various directing group strategies, bidentate directing groups are now recognized as one of the most efficient devices for the selective functionalization of certain positions due to fact that its metal center permits fine, tunable, and reversible coordination. The family of bidentate directing groups permit various types of assistance to be achieved, such as N,N-dentate, N,O-dentate, and N,S-dentate auxiliaries, which are categorized based on the coordination site. In this review, we broadly discuss various C-H bond functionalization reactions for the formation of C-C bonds with the aid of bidentate directing groups.
Collapse
Affiliation(s)
- Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering , Osaka University , Suita , Osaka 560-0871 , Japan
| |
Collapse
|
25
|
Chen Z, Wang LC, Wu XF. Carbonylative synthesis of heterocycles involving diverse CO surrogates. Chem Commun (Camb) 2020; 56:6016-6030. [DOI: 10.1039/d0cc01504k] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent advances in the carbonylative synthesis of heterocycles by using diverse CO surrogates as sources of CO are summarized and discussed.
Collapse
Affiliation(s)
- Zhengkai Chen
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Le-Cheng Wang
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry
- Zhejiang Sci-Tech University
- Hangzhou 310018
- People's Republic of China
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock
| |
Collapse
|
26
|
Zhao S, Mankad NP. Synergistic Copper-Catalyzed Reductive Aminocarbonylation of Alkyl Iodides with Nitroarenes. Org Lett 2019; 21:10106-10110. [PMID: 31802670 DOI: 10.1021/acs.orglett.9b04092] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Siling Zhao
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Neal P. Mankad
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
27
|
Ying J, Gao Q, Wu XF. Site-Selective Carbonylative Synthesis of Structurally Diverse Lactams from Heterocyclic Amines with TFBen as the CO Source. J Org Chem 2019; 84:14297-14305. [DOI: 10.1021/acs.joc.9b02114] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jun Ying
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018, People’s Republic of China
| | - Qian Gao
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018, People’s Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018, People’s Republic of China
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Straβe 29a, Rostock 18059, Germany
| |
Collapse
|
28
|
Wang X, Huang D, Wang KH, Su Y, Hu Y. Tin Powder-Promoted Cascade Condensation/Allylation/Lactamization: Synthesis of Isoindolinones and Pyrazoloisoindol-8-ones. J Org Chem 2019; 84:6946-6961. [PMID: 31088075 DOI: 10.1021/acs.joc.9b00733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient tin powder-promoted cascade condensation/allylation/lactamization of 2-formylbenzoic acids, hydrazides, and allyl bromides was developed for the synthesis of isoindolinones in good to excellent yields under mild conditions without any other additives or catalysts. Further manipulation of isoindolinones by iodocyclization process afforded the tricyclic tetrahydro-8 H-pyrazolo[5,1- a]isoindol-8-one derivatives, which could be converted into more complicated tetracyclic tetrahydro-4 H-azirino[1',2':2,3]pyrazolo[5,1- a]isoindol-4-ones.
Collapse
Affiliation(s)
- Xiaoping Wang
- College of Chemistry and Chemical Engineering , Northwest Normal University , 967 Anning East Road , Lanzhou 730070 , P. R. China
| | - Danfeng Huang
- College of Chemistry and Chemical Engineering , Northwest Normal University , 967 Anning East Road , Lanzhou 730070 , P. R. China
| | - Ke-Hu Wang
- College of Chemistry and Chemical Engineering , Northwest Normal University , 967 Anning East Road , Lanzhou 730070 , P. R. China
| | - Yingpeng Su
- College of Chemistry and Chemical Engineering , Northwest Normal University , 967 Anning East Road , Lanzhou 730070 , P. R. China
| | - Yulai Hu
- College of Chemistry and Chemical Engineering , Northwest Normal University , 967 Anning East Road , Lanzhou 730070 , P. R. China.,State Key Laboratory of Applied Organic Chemistry , Lanzhou University , Lanzhou 730000 , P. R. China
| |
Collapse
|
29
|
Mondal K, Halder P, Gopalan G, Sasikumar P, Radhakrishnan KV, Das P. Chloroform as a CO surrogate: applications and recent developments. Org Biomol Chem 2019; 17:5212-5222. [PMID: 31080990 DOI: 10.1039/c9ob00886a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The carbonyl moiety is one of the indispensable sub-units in organic synthesis with significant applications in medicinal as well as materials chemistry. Hence the insertion of a carbonyl group via simple and highly efficient routes has been one of the most challenging tasks for organic chemists. Though the direct utilisation of CO gas in carbonylation is the fundamental procedure for the construction of carbonyl compounds, it has certain drawbacks due to its toxic and explosive nature. As a result, the need for cheap and efficient CO surrogates has gained much attention nowadays by which CO gas can be easily generated in situ or ex situ. In this review we discuss the advantages of chloroform as CO surrogate and have surveyed recent carbonylation reactions where chloroform has been used as CO source.
Collapse
Affiliation(s)
- Krishanu Mondal
- Department of Applied Chemistry, IIT(ISM) Dhanbad, Dhanbad 826004, India.
| | | | | | | | | | | |
Collapse
|
30
|
Wu Y, Tian B, Witzel S, Jin H, Tian X, Rudolph M, Rominger F, Hashmi ASK. AuBr 3 -Catalyzed Chemoselective Annulation of Isocyanates with 2H-Azirine. Chemistry 2019; 25:4093-4099. [PMID: 30370953 DOI: 10.1002/chem.201804765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Indexed: 01/19/2023]
Abstract
The chemoselective cyclization of isocyanates with 2H-azirine was achieved with AuBr3 as catalyst. This transfer sets the stage for the synthesis of aromatic oxazole-ureas in a tandem process. The addition of a catalytic amount of phosphite enhances the process enormously. The reaction can also be performed in a one-pot process using benzoyl azide instead of isocyanate under the same conditions. A detailed study on the role of the phosphite that was applied as an additive revealed that only non-coordinated phosphite can reduce gold(III) and that gold(I) coordinated phosphite is not oxidized. Accompanied by the reduction of gold, HBr is generated in situ, which turned out to be the actual promotor in combination with the remaining AuBr3 . The positive effect of acid can be explained by a strong N-Au coordination, which tends to break more easily in the presence of small amount of protic acid in the reaction solution.
Collapse
Affiliation(s)
- Yufeng Wu
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Bing Tian
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Sina Witzel
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Hongming Jin
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Xianhai Tian
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Matthias Rudolph
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.,Chemistry Department, Faculty of Science, King Abdulaziz University (KAU), 21589, Jeddah, Saudi Arabia
| |
Collapse
|
31
|
Fu LY, Ying J, Qi X, Peng JB, Wu XF. Palladium-Catalyzed Carbonylative Synthesis of Isoindolinones from Benzylamines with TFBen as the CO Source. J Org Chem 2019; 84:1421-1429. [DOI: 10.1021/acs.joc.8b02862] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Lu-Yang Fu
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018, People’s Republic of China
| | - Jun Ying
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018, People’s Republic of China
| | - Xinxin Qi
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018, People’s Republic of China
| | - Jin-Bao Peng
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018, People’s Republic of China
| | - Xiao-Feng Wu
- Department of Chemistry, Zhejiang Sci-Tech University, Xiasha Campus, Hangzhou 310018, People’s Republic of China
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock, Albert-Einstein-Straβe 29a, 18059 Rostock, Germany
| |
Collapse
|
32
|
Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BUW, Schnürch M. A comprehensive overview of directing groups applied in metal-catalysed C-H functionalisation chemistry. Chem Soc Rev 2018; 47:6603-6743. [PMID: 30033454 PMCID: PMC6113863 DOI: 10.1039/c8cs00201k] [Citation(s) in RCA: 1128] [Impact Index Per Article: 161.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Indexed: 12/20/2022]
Abstract
The present review is devoted to summarizing the recent advances (2015-2017) in the field of metal-catalysed group-directed C-H functionalisation. In order to clearly showcase the molecular diversity that can now be accessed by means of directed C-H functionalisation, the whole is organized following the directing groups installed on a substrate. Its aim is to be a comprehensive reference work, where a specific directing group can be easily found, together with the transformations which have been carried out with it. Hence, the primary format of this review is schemes accompanied with a concise explanatory text, in which the directing groups are ordered in sections according to their chemical structure. The schemes feature typical substrates used, the products obtained as well as the required reaction conditions. Importantly, each example is commented on with respect to the most important positive features and drawbacks, on aspects such as selectivity, substrate scope, reaction conditions, directing group removal, and greenness. The targeted readership are both experts in the field of C-H functionalisation chemistry (to provide a comprehensive overview of the progress made in the last years) and, even more so, all organic chemists who want to introduce the C-H functionalisation way of thinking for a design of straightforward, efficient and step-economic synthetic routes towards molecules of interest to them. Accordingly, this review should be of particular interest also for scientists from industrial R&D sector. Hence, the overall goal of this review is to promote the application of C-H functionalisation reactions outside the research groups dedicated to method development and establishing it as a valuable reaction archetype in contemporary R&D, comparable to the role cross-coupling reactions play to date.
Collapse
Affiliation(s)
- Carlo Sambiagio
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - David Schönbauer
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Remi Blieck
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Toan Dao-Huy
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Gerit Pototschnig
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Patricia Schaaf
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Thomas Wiesinger
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Muhammad Farooq Zia
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Joanna Wencel-Delord
- Laboratoire de Chimie Moléculaire (UMR CNRS 7509)
, Université de Strasbourg
,
ECPM 25 Rue Becquerel
, 67087 Strasbourg
, France
| | - Tatiana Besset
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Bert U. W. Maes
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| |
Collapse
|
33
|
Qiu S, Zhai S, Wang H, Tao C, Zhao H, Zhai H. Efficient Synthesis of Phthalimides via Cobalt-Catalyzed C(sp
2
)−H Carbonylation of Benzoyl Hydrazides with Carbon Monoxide. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800388] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shuxian Qiu
- The State Key Laboratory of Chemical Oncogenomics and the Key Laboratory of Chemical Genomics; Shenzhen Graduate School of Peking University; Shenzhen 518055 People's Republic of China
| | - Shengxian Zhai
- The State Key Laboratory of Chemical Oncogenomics and the Key Laboratory of Chemical Genomics; Shenzhen Graduate School of Peking University; Shenzhen 518055 People's Republic of China
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 People's Republic of China
| | - Huifei Wang
- The State Key Laboratory of Chemical Oncogenomics and the Key Laboratory of Chemical Genomics; Shenzhen Graduate School of Peking University; Shenzhen 518055 People's Republic of China
| | - Cheng Tao
- The State Key Laboratory of Chemical Oncogenomics and the Key Laboratory of Chemical Genomics; Shenzhen Graduate School of Peking University; Shenzhen 518055 People's Republic of China
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 People's Republic of China
| | - Hua Zhao
- The State Key Laboratory of Chemical Oncogenomics and the Key Laboratory of Chemical Genomics; Shenzhen Graduate School of Peking University; Shenzhen 518055 People's Republic of China
| | - Hongbin Zhai
- The State Key Laboratory of Chemical Oncogenomics and the Key Laboratory of Chemical Genomics; Shenzhen Graduate School of Peking University; Shenzhen 518055 People's Republic of China
- The State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering; Lanzhou University; Lanzhou 730000 People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering; Tianjin) China
| |
Collapse
|
34
|
Guo S, Wang F, Sun L, Zhang X, Fan X. Palladium-Catalyzed Oxidative Cyclocarbonylation of Isoquinolones with CO via C−H/N−H Bond Cleavage: Easy Access to Isoindolo[2,1-b
]isoquinoline-5,7-dione Derivatives. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800347] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Shenghai Guo
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions; Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| | - Fang Wang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions; Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| | - Lincong Sun
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions; Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| | - Xinying Zhang
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions; Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| | - Xuesen Fan
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions; Ministry of Education; School of Chemistry and Chemical Engineering; Henan Normal University; Xinxiang Henan 453007 People's Republic of China
| |
Collapse
|
35
|
Zhang C, Ding Y, Gao Y, Li S, Li G. Palladium-Catalyzed Direct C–H Carbonylation of Free Primary Benzylamines: A Synthesis of Benzolactams. Org Lett 2018; 20:2595-2598. [DOI: 10.1021/acs.orglett.8b00786] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chunhui Zhang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350002, China
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yongzheng Ding
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yuzhen Gao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Shangda Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Gang Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
36
|
Zhu C, Wang CQ, Feng C. Recent advance in transition-metal-catalyzed oxidant-free 4+1 annulation through C–H bond activation. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2017.12.062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|