1
|
Poriel C, Rault-Berthelot J. Dihydroindenofluorenes as building units in organic semiconductors for organic electronics. Chem Soc Rev 2023; 52:6754-6805. [PMID: 37702538 DOI: 10.1039/d1cs00993a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
This review aims to discuss organic semiconductors constructed on dihydroindenofluorene positional isomers, which are key molecular scaffolds in organic electronics. Bridged oligophenylenes are key organic semiconductors that have allowed the development of organic electronic technologies. Dihydroindenofluorenes (DHIFs) belong to the family of bridged oligophenylenes constructed on a terphenyl backbone. They have proven to be very promising building blocks for the construction of highly efficient organic semiconductors for all OE devices, namely organic light emitting diodes (OLEDs), phosphorescent OLEDs, organic field-effect transistors (OFETs), solar cells, etc.
Collapse
Affiliation(s)
- Cyril Poriel
- UMR CNRS 6226-Université Rennes 1-ISCR-Campus de Beaulieu, 35042 Rennes, France.
| | | |
Collapse
|
2
|
Thermally Crosslinked Hydrogen-Bonded Organic Framework Membranes for Highly Selective Ion Separation. Molecules 2023; 28:molecules28052173. [PMID: 36903421 PMCID: PMC10004400 DOI: 10.3390/molecules28052173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
The weak bonding energy and flexibility of hydrogen bonds can hinder the long-term use of hydrogen-bonded organic framework (HOF) materials under harsh conditions. Here we invented a thermal-crosslinking method to form polymer materials based on a diamino triazine (DAT) HOF (FDU-HOF-1), containing high-density hydrogen bonding of N-H⋯N. With the increase of temperature to 648 K, the formation of -NH- bonds between neighboring HOF tectons by releasing NH3 was observed based on the disappearance of the characteristic peaks of amino groups on FDU-HOF-1 in the Fourier transform infrared (FTIR) and solid-state nuclear magnetic resonance (ss-NMR). The variable temperature PXRD indicated the formation of a new peak at 13.2° in addition to the preservation of the original diffraction peaks of FDU-HOF-1. The water adsorption, acid-base stability (12 M HCl to 20 M NaOH) and solubility experiments concluded that the thermally crosslinked HOFs (TC-HOFs) are highly stable. The membranes fabricated by TC-HOF demonstrate the permeation rate of K+ ions as high as 270 mmol m-2 h-1 as well as high selectivity of K+/Mg2+ (50) and Na+/Mg2+ (40), which was comparable to Nafion membranes. This study provides guidance for the future design of highly stable crystalline polymer materials based on HOFs.
Collapse
|
3
|
Néron S, Morency M, Chen L, Maris T, Rochefort D, Iftimie R, Wuest JD. Diphenoquinones Redux. J Org Chem 2022; 87:7673-7695. [PMID: 35667025 DOI: 10.1021/acs.joc.2c00260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Benzoquinones can undergo reversible reductions and are attractive candidates for use as active materials in green carbon-based batteries. Related compounds of potential utility include 4,4'-diphenoquinones, which have extended quinonoid structures with two carbonyl groups in different rings. Diphenoquinones are a poorly explored class of compounds, but a wide variety can be synthesized, isolated, crystallized, and fully characterized. Experimental and computational approaches have established that typical 4,4'-diphenoquinones have nearly planar cores in which two cyclohexadienone rings are joined by an unusually long interannular C═C bond. Derivatives unsubstituted at the 3,3',5,5'-positions react readily by hydration, dimerization, and other processes. Association of diphenoquinones in the solid state normally produces chains or sheets held together by multiple C-H···O interactions, giving structures that differ markedly from those of the corresponding 4,4'-dihydroxybiphenyls. Electrochemical studies in solution and in the solid state show that diphenoquinones are reduced rapidly and reversibly at potentials higher than those of analogous benzoquinones. Together, these results help bring diphenoquinones into the mainstream of modern chemistry and provide a foundation for developing redox-active derivatives for use in carbon-based electrochemical devices.
Collapse
Affiliation(s)
- Sébastien Néron
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Mathieu Morency
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Liguo Chen
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Thierry Maris
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Dominic Rochefort
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - Radu Iftimie
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| | - James D Wuest
- Département de Chimie, Université de Montréal, Montréal, Québec H2V 0B3, Canada
| |
Collapse
|
4
|
Synthesis of a triethylene glycol-capped benzo[1,2-c:4,5-c']bis[2]benzopyran-5,12-dione: A highly soluble dilactone-bridged p-terphenyl with a crankshaft architecture. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Li P, Li P, Ryder MR, Liu Z, Stern CL, Farha OK, Stoddart JF. Interpenetration Isomerism in Triptycene‐Based Hydrogen‐Bonded Organic Frameworks. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811263] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Penghao Li
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Peng Li
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Matthew R. Ryder
- Neutron Scattering Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Zhichang Liu
- School of Science Westlake University 18 Shilongshan Road Hangzhou 310024 China
| | - Charlotte L. Stern
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Omar K. Farha
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - J. Fraser Stoddart
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Institute for Molecular Design and Synthesis Tianjin University 92 Weijin Road Tianjin 300072 China
- School of Chemistry University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
6
|
Li P, Li P, Ryder MR, Liu Z, Stern CL, Farha OK, Stoddart JF. Interpenetration Isomerism in Triptycene-Based Hydrogen-Bonded Organic Frameworks. Angew Chem Int Ed Engl 2019; 58:1664-1669. [PMID: 30548232 DOI: 10.1002/anie.201811263] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/18/2018] [Indexed: 11/09/2022]
Abstract
We describe an example of "interpenetration isomerism" in three-dimensional hydrogen-bonded organic frameworks. By exploiting the crystallization conditions for a peripherally extended triptycene H6 PET, we can modulate the interpenetration of the assembled frameworks, yielding a two-fold interpenetrated structure PETHOF-1 and a five-fold interpenetrated structure PETHOF-2 as interpenetration isomers. In PETHOF-1, two individual nets are related by inversion symmetry and form an interwoven topology with a large guest-accessible volume of about 80 %. In PETHOF-2, five individual nets are related by translational symmetry and are stacked in an alternating fashion. The activated materials show permanent porosity with Brunauer-Emmett-Teller surface areas exceeding 1100 m2 g-1 . Synthetic control over the framework interpenetration could serve as a new strategy to construct complex supramolecular architectures from simple organic building blocks.
Collapse
Affiliation(s)
- Penghao Li
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Peng Li
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Matthew R Ryder
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Zhichang Liu
- School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, China
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Omar K Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.,Institute for Molecular Design and Synthesis, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.,School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
7
|
Abstract
Bridged oligophenylenes are very important organic semiconductors (OSCs) in organic electronics (OE). The fluorene unit, which is a bridged biphenyl, is the spearhead of this class of materials and has, over the last 20 years, led to fantastic breakthroughs in organic light-emitting diodes. Dihydroindenofluorenes belong to the family of bridged terphenyls and can be viewed as the fusion of a fluorene unit with an indene fragment. Dihydroindenofluorenes have also appeared as very promising building blocks for OE applications. In the dihydroindenofluorene family, there are five positional isomers, with three different phenyl linkages ( para/ meta/ ortho) and two different ring bridge arrangements ( anti/ syn). We have focused on the concept of positional isomerism. Indeed, the structural differences of the dihydroindenofluorenyl cores lead to unusual electronic properties, which our group has described since 2006, thanks to the five dispirofluorene-indenofluorene positional isomers (dihydroindenofluorenes substituted on the bridges by fluorenyl units). 6,12-Dihydroindeno[1,2- b]fluorene (the para-anti isomer) is constructed on a p-terphenyl core and possesses an anti geometry. Although this isomer has been widely investigated over the last 20 years, studies of the four other isomers remain very scarce. 11,12-Dihydroindeno[2,1- a]fluorene (the para-syn isomer) is also built on a bridged p-terphenyl core but possesses a syn geometry. This particular geometry has been advantageously used by our group to drastically tune the electronic properties, and this isomer has emerged as a promising scaffold to obtain stable blue emission arising from conformationally controllable intramolecular excimers. These preliminary studies have shown the crucial influence of the geometry on the electronic properties of the dihydroindenofluorenes. Modification of the arrangement of the phenyl linkages from para to meta provides the meta isomers, namely, 7,12-dihydroindeno[1,2- a]fluorene (the meta-anti isomer) and 5,7-dihydroindeno[2,1- b]fluorene (the meta-syn isomer). With these two regioisomers, the strong impacts of both the linkage and the geometry on the electronic properties have been particularly highlighted over the years. The last positional isomer of the family is 5,8-dihydroindeno[2,1- c]fluorene, which possesses a central o-terphenyl backbone and a syn geometry. This isomer is unique because of its ortho linkage, which induces a particular helicoidal turn of the dihydroindenofluorenyl core. Using a structure-property relationship approach, in the present Account we describe the molecular diversity of the five dispirofluorene-indenofluorene positional isomers and the consequences both in terms of their organic synthesis and electronic properties. This Account shows how positional isomerism can be a powerful tool to tune the electronic properties of OSCs.
Collapse
Affiliation(s)
- Cyril Poriel
- Univ Rennes, CNRS, ISCR-6226, F-35000 Rennes, France
| | | |
Collapse
|
8
|
McKay AP, Shillito GE, Gordon KC, McMorran DA. Cyclometallated platinum(ii) and palladium(ii) complexes containing 1,5-diarylbiguanides: synthesis, characterisation and hydrogen bond-directed assembly. CrystEngComm 2017. [DOI: 10.1039/c7ce01805c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
[M(ppy)(big)] (M = Pt(ii), Pd(ii), big = 1,5-diarylbiguanide) complexes are synthesised and their promise as tectons for hydrogen bond-directed assembly is explored.
Collapse
Affiliation(s)
- Aidan P. McKay
- Department of Chemistry Te Tari Hua-Ruanuku
- University of Otago
- Dunedin
- New Zealand
| | - Georgina E. Shillito
- Department of Chemistry Te Tari Hua-Ruanuku
- University of Otago
- Dunedin
- New Zealand
| | - Keith C. Gordon
- Department of Chemistry Te Tari Hua-Ruanuku
- University of Otago
- Dunedin
- New Zealand
| | - David A. McMorran
- Department of Chemistry Te Tari Hua-Ruanuku
- University of Otago
- Dunedin
- New Zealand
| |
Collapse
|