1
|
Ofodum NM, Qi Q, Chandradat R, Warfle T, Lu X. Advancing Dynamic Polymer Mechanochemistry through Synergetic Conformational Gearing. J Am Chem Soc 2024; 146:17700-17711. [PMID: 38888499 DOI: 10.1021/jacs.4c02066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Harnessing mechanical force to modulate material properties and enhance biomechanical functions is essential for advancing smart materials and bioengineering. Polymer mechanochemistry provides an emerging toolkit for exploring unconventional chemical transformations and modulating molecular structures through mechanical force. One of the key challenges is developing innovative force-sensing mechanisms for precise and in situ force detection. This study introduces mDPAC, a dynamic and sensitive mechanophore, demonstrating its mechanochromic properties through synergetic conformational gearing. Its unique mechanoresponsive mechanism is based on the simultaneous conformational synergy between its phenazine and phenyl moieties, facilitated by a worm-gear-like structure. We confirm mDPAC's complex mechanochemical response and elucidate its mechanotransduction mechanism through our experimental data and comprehensive simulations. The compatibility of mDPAC with hydrogels is particularly notable, highlighting its potential for applications in aqueous biological environments as a dynamic force sensor. Moreover, mDPAC's multicolored mechanochromic responses facilitate direct force sensing and visual detection, paving the way for precise and real-time mechanical force sensing in bulk materials.
Collapse
Affiliation(s)
- Nnamdi M Ofodum
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave, Potsdam, New York 13699, United States
| | - Qingkai Qi
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave, Potsdam, New York 13699, United States
| | - Richard Chandradat
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave, Potsdam, New York 13699, United States
| | - Theodore Warfle
- Department of Chemical and Biomolecular Engineering, Clarkson University, 8 Clarkson Ave, Potsdam, New York 13699, United States
| | - Xiaocun Lu
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Ave, Potsdam, New York 13699, United States
| |
Collapse
|
2
|
Guo S, Liu L, Li X, Liu G, Fan Y, He J, Lian Z, Yang H, Chen X, Jiang H. Highly Luminescent Chiral Carbon Nanohoops via Symmetry Breaking with a Triptycene Unit: Bright Circularly Polarized Luminescence and Size-Dependent Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308429. [PMID: 37988709 DOI: 10.1002/smll.202308429] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/31/2023] [Indexed: 11/23/2023]
Abstract
Chiral carbon nanohoops with both high fluorescence quantum yield and large luminescence dissymmetry factor are essential to the development of circularly polarized luminescence (CPL) materials. Herein, the rational design and synthesis of a series of highly fluorescent chiral carbon nanohoops TP-[8-13]CPPs via symmetry breaking with a chiral triptycene motif is reported. Theoretical calculations revealed that breaking the symmetry of nanohoops causes a unique size-dependent localization in the highest occupied molecular orbitals (HOMOs) and the lowest unoccupied molecular obtitals (LUMOs) as the increasing of sizes, which is sharply different from those of [n]cycloparaphenylenes. Photophysical investigations demonstrated that TP-[n]CPPs display size-dependent emissions with high fluorescence quantum yields up to 92.9% for TP-[13]CPP, which is the highest value among the reported chiral conjugated carbon nanohoops. The high fluorescence quantum yields are presumably attributed to both the unique acyclic, and radial conjugations and high radiative transition rates, which are further supported by theoretical investigations. Chiroptical studies revealed that chiral TP-[n]CPPs exhibit bright CPL with CPL brightness up to 100.5 M-1 cm-1 for TP-[11]CPP due to the high fluorescence quantum yield. Importantly, the investigations revealed the intrigued size-dependent properties of TP-[n]CPPs with regards to (chir)optical properties, which follow a nice linear relationship versus 1/n. Such a nice linear relationship is not observed in other reported conjugated nanohoops including CPPs.
Collapse
Affiliation(s)
- Shengzhu Guo
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Lin Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiaonan Li
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Guoqin Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yanqing Fan
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Jing He
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Zhe Lian
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Huiji Yang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xuebo Chen
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Hua Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| |
Collapse
|
3
|
Arpa EM, Stafström S, Durbeej B. A Proof-of-Principle Design for Through-Space Transmission of Unidirectional Rotary Motion by Molecular Photogears. Chemistry 2024; 30:e202303191. [PMID: 37906675 DOI: 10.1002/chem.202303191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
The construction of molecular photogears that can achieve through-space transmission of the unidirectional double-bond rotary motion of light-driven molecular motors onto a remote single-bond axis is a formidable challenge in the field of artificial molecular machines. Here, we present a proof-of-principle design of such photogears that is based on the possibility of using stereogenic substituents to control both the relative stabilities of two helical forms of the photogear and the double-bond photoisomerization reaction that connects them. The potential of the design was verified by quantum-chemical modeling through which photogearing was found to be a favorable process compared to free-standing single-bond rotation ("slippage"). Overall, our study unveils a surprisingly simple approach to realizing unidirectional photogearing.
Collapse
Affiliation(s)
- Enrique M Arpa
- Division of Theoretical Chemistry, IFM, Linköping University, 58183, Linköping, Sweden
| | - Sven Stafström
- Division of Theoretical Physics, IFM, Linköping University, 58183, Linköping, Sweden
| | - Bo Durbeej
- Division of Theoretical Chemistry, IFM, Linköping University, 58183, Linköping, Sweden
| |
Collapse
|
4
|
Chen Z, Lu H, Chao I, Yang J. On–off switching of the correlated motion in a rotation‐inversion dual‐mode molecular system. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zi‐Jian Chen
- Department of Chemistry National Taiwan University Taipei Taiwan
| | - Hsiu‐Feng Lu
- Institute of Chemistry Academia Sinica Taipei Taiwan
| | - Ito Chao
- Institute of Chemistry Academia Sinica Taipei Taiwan
| | - Jye‐Shane Yang
- Department of Chemistry National Taiwan University Taipei Taiwan
| |
Collapse
|
5
|
Wang H, Guan Q, Wang X. Theoretical study on pentiptycene molecular brake: photoinduced isomerization and photoinduced electron transfer. J Mol Model 2021; 27:289. [PMID: 34536143 DOI: 10.1007/s00894-021-04900-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/01/2021] [Indexed: 11/26/2022]
Abstract
The isomerization of the double bond plays an important role in the braking and de-braking of the light-controlled molecular brake. Therefore, the pentiptycene-type (Pp-type) light-controlled molecular brake system ((E)- and (Z)-4'-pentiptycyl vinyl-[1,1'-biphenyl]-4-carbonitrile) containing the C = C double bond was theoretically studied. Combining the 6-31G(d) basis set, the ωB97XD functional with dispersion correction was applied to implement the (E)-configuration and (Z)-configuration initial optimization. Next, using the 6-311G(d,p) basis set, the relaxed potential energy surface scans of the rotation angle were operated, and then the optimization calculations of the transition states at the extremum high points. Analyzing the stagnation points and the rotational transition states on the potential energy profiles, the rotation mechanism and basic energy parameters of the molecular brake were obtained. Then, the DFT computations at ground states and the TD-DFT computations of vertical excitation energy were put into practice at the accuracy of the def-TZVP basis set for the two configurations, and using the natural transition orbital (NTO) analyses combining the excitation energies and absorption spectra, the electronic transition characteristics and electron transfer properties of light-controlled molecular brake were studied. Afterwards, in order to investigate the photoinduced isomerization reaction, the C = C double bond was scanned on the relaxed potential energy surface, and the intermediates of the isomerization reaction were searched and analyzed; thus, the braking mechanism of the light-controlled molecular brake was proposed.
Collapse
Affiliation(s)
- Hailong Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, People's Republic of China
| | - Qiuping Guan
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, People's Republic of China
| | - Xueye Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, 411105, People's Republic of China.
| |
Collapse
|
6
|
Gisbert Y, Abid S, Kammerer C, Rapenne G. Molecular Gears: From Solution to Surfaces. Chemistry 2021; 27:12019-12031. [PMID: 34131971 DOI: 10.1002/chem.202101489] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Indexed: 01/18/2023]
Abstract
This review highlights the major efforts devoted to the development of molecular gears over the past 40 years, from pioneering covalent bis-triptycyl systems undergoing intramolecular correlated rotation in solution, to the most recent examples of gearing systems anchored on a surface, which allow intermolecular transmission of mechanical power. Emphasis is laid on the different strategies devised progressively to control the architectures of molecular bevel and spur gears, as intramolecular systems in solution or intermolecular systems on surfaces, while aiming at increased efficiency, complexity and functionality.
Collapse
Affiliation(s)
- Yohan Gisbert
- CEMES, Université de Toulouse, CNRS, 29, rue Marvig, 31055, Toulouse, France
| | - Seifallah Abid
- CEMES, Université de Toulouse, CNRS, 29, rue Marvig, 31055, Toulouse, France
| | - Claire Kammerer
- CEMES, Université de Toulouse, CNRS, 29, rue Marvig, 31055, Toulouse, France
| | - Gwénaël Rapenne
- CEMES, Université de Toulouse, CNRS, 29, rue Marvig, 31055, Toulouse, France.,Division of Materials Science, Nara Institute of Science and Technology, 8916-5, Nara, Japan
| |
Collapse
|
7
|
Komiya N, Ikeshita M, Tosaki K, Sato A, Itami N, Naota T. Catalytic Enantioselective Rotation of Watermill‐Shaped Dinuclear Pd Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Naruyoshi Komiya
- Department of Chemistry, Graduate School of Engineering Science Osaka University Machikaneyama, Toyonaka, Osaka 560-8531 Japan
- Chemistry Laboratory The Jikei University School of Medicine Kokuryo, Chofu, Tokyo 182-8570 Japan
| | - Masahiro Ikeshita
- Department of Chemistry, Graduate School of Engineering Science Osaka University Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| | - Koichi Tosaki
- Department of Chemistry, Graduate School of Engineering Science Osaka University Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| | - Atsushi Sato
- Department of Chemistry, Graduate School of Engineering Science Osaka University Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| | - Nao Itami
- Department of Chemistry, Graduate School of Engineering Science Osaka University Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| | - Takeshi Naota
- Department of Chemistry, Graduate School of Engineering Science Osaka University Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| |
Collapse
|
8
|
Wang H, Guan Q, Wang X. Theoretical research of covalent and controllable molecular brake based on 9-triptycene. Theor Chem Acc 2021. [DOI: 10.1007/s00214-021-02762-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Ehnbom A, Gladysz JA. Gyroscopes and the Chemical Literature, 2002–2020: Approaches to a Nascent Family of Molecular Devices. Chem Rev 2021; 121:3701-3750. [DOI: 10.1021/acs.chemrev.0c01001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Andreas Ehnbom
- Department of Chemistry, Texas A&M University, PO Box 30012, College Station, Texas 77842-3012, United States
| | - John A. Gladysz
- Department of Chemistry, Texas A&M University, PO Box 30012, College Station, Texas 77842-3012, United States
| |
Collapse
|
10
|
Abid S, Gisbert Y, Kojima M, Saffon-Merceron N, Cuny J, Kammerer C, Rapenne G. Desymmetrised pentaporphyrinic gears mounted on metallo-organic anchors. Chem Sci 2021; 12:4709-4721. [PMID: 34163729 PMCID: PMC8179540 DOI: 10.1039/d0sc06379g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/13/2021] [Indexed: 11/21/2022] Open
Abstract
Mastering intermolecular gearing is crucial for the emergence of complex functional nanoscale machineries. However, achieving correlated motion within trains of molecular gears remains highly challenging, due to the multiple degrees of freedom of each cogwheel. In this context, we designed and synthesised a series of star-shaped organometallic molecular gears incorporating a hydrotris(indazolyl)borate anchor to prevent diffusion on the surface, a central ruthenium atom as a fixed rotation axis, and an azimuthal pentaporphyrinic cyclopentadienyl cogwheel specifically labelled to monitor its motion by non-time-resolved Scanning Tunneling Microscopy (STM). Desymmetrisation of the cogwheels was first achieved sterically, i.e. by introducing one tooth longer than the other four. For optimal mechanical interactions, chemical labelling was also investigated as a preferential way to induce local contrast in STM images, and the electronic properties of one single paddle were modulated by varying the porphyrinic scaffold or the nature of the central metal. To reach such a structural diversity, our modular synthetic approach relied on sequential cross-coupling reactions on a penta(p-halogenophenyl)cyclopentadienyl ruthenium(ii) key building block, bearing a single pre-activated p-iodophenyl group. Chemoselective Sonogashira or more challenging Suzuki-Miyaura reactions allowed the controlled introduction of the tagged porphyrinic tooth, and the subsequent four-fold cross-couplings yielded the prototypes of pentaporphyrinic molecular gears for on-surface studies, incorporating desymmetrised cogwheels over 5 nm in diameter.
Collapse
Affiliation(s)
- Seifallah Abid
- CEMES, Université de Toulouse, CNRS 29 Rue Marvig F-31055 Toulouse Cedex 4 France
| | - Yohan Gisbert
- CEMES, Université de Toulouse, CNRS 29 Rue Marvig F-31055 Toulouse Cedex 4 France
| | - Mitsuru Kojima
- Division of Materials Science, Nara Institute of Science and Technology, NAIST 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Nathalie Saffon-Merceron
- Université de Toulouse, UPS, Institut de Chimie de Toulouse ICT FR 2599, 118 Route de Narbonne 31062 Toulouse France
| | - Jérôme Cuny
- LCPQ, Université de Toulouse, CNRS 118 Route de Narbonne F-31062 Toulouse Cedex 9 France
| | - Claire Kammerer
- CEMES, Université de Toulouse, CNRS 29 Rue Marvig F-31055 Toulouse Cedex 4 France
| | - Gwénaël Rapenne
- CEMES, Université de Toulouse, CNRS 29 Rue Marvig F-31055 Toulouse Cedex 4 France
- Division of Materials Science, Nara Institute of Science and Technology, NAIST 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| |
Collapse
|
11
|
Jia Z, Guan Q, Wang H, Wang X. Theoretical investigation on cis-trans isomerisation of azaphosphatriptycene- based molecular gear. Supramol Chem 2020. [DOI: 10.1080/10610278.2020.1842406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Zishang Jia
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, PR China
| | - Qiuping Guan
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, PR China
| | - Hailong Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, PR China
| | - Xueye Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan, PR China
| |
Collapse
|
12
|
Liepuoniute I, Jellen MJ, Garcia-Garibay MA. Correlated motion and mechanical gearing in amphidynamic crystalline molecular machines. Chem Sci 2020; 11:12994-13007. [PMID: 34094484 PMCID: PMC8163207 DOI: 10.1039/d0sc04495d] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
In this review we highlight the recent efforts towards the development of molecular gears with an emphasis on building molecular gears in the solid state and the role that molecular gearing and correlated motions may play in the function of crystalline molecular machines. We discuss current molecular and crystal engineering strategies, challenges associated with engineering correlated motion in crystals, and outline experimental and theoretical tools to explore gearing dynamics while highlighting key advances made to date.
Collapse
Affiliation(s)
- Ieva Liepuoniute
- Department of Chemistry and Biochemistry, University of California Los Angeles CA 90095-1569 USA
| | - Marcus J Jellen
- Department of Chemistry and Biochemistry, University of California Los Angeles CA 90095-1569 USA
| | - Miguel A Garcia-Garibay
- Department of Chemistry and Biochemistry, University of California Los Angeles CA 90095-1569 USA
| |
Collapse
|
13
|
Liepuoniute I, Sanders JN, Garcia-Garibay MA, Houk KN. Computational Investigation into Ligand Effects on Correlated Geared Dynamics in Dirhodium Supramolecular Gears-Insights Beyond the NMR Experimental Window. J Org Chem 2020; 85:8695-8701. [PMID: 32478513 DOI: 10.1021/acs.joc.0c01230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The rotational dynamics of dirhodium supramolecular gears, formed with four 9-triptycene carboxylates cyclically arranged around a dirhodium core with variable axial ligands as originally designed by Shionoya et al., provide an excellent opportunity to evaluate the potential of computational methods and expand our understanding of the factors determining geared dynamics. Rotational dynamic rates in these structures depend on the nature of the axial ligand as shown by simulations over timescales that are not accessible experimentally. Molecular dynamics simulations gave information on the gearing mechanism, and the activation barriers to gearing were calculated using density functional theory. Steric demands imposed by the axial ligand were quantified using buried volume analysis. We found that gearing takes place in all six dirhodium-gear complexes with different axial ligands and that rotational barriers depend on their steric size.
Collapse
Affiliation(s)
- Ieva Liepuoniute
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jacob N Sanders
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Miguel A Garcia-Garibay
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
14
|
Jiang X, Yang S, Jellen MJ, Houk KN, Garcia-Garibay M. Molecular Spur Gears with Triptycene Rotators and a Norbornane-Based Stator. Org Lett 2020; 22:4049-4052. [PMID: 32233498 DOI: 10.1021/acs.orglett.0c01029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report efforts to prepare a molecular spur gear utilizing a convenient synthesis of a norbornane stator that positions two interdigitated diyne-linked triptycenes in parallel alignment. While gearing was not observed by 19F NMR for a -CF3-labeled analog at temperatures as low as 213 K, we used molecular dynamics simulation and 2D metadynamics calculations to understand the gearing/slippage energetic profile for various molecular spur gears to guide future designs of these systems.
Collapse
Affiliation(s)
- Xing Jiang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Song Yang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Marcus J Jellen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Miguel Garcia-Garibay
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|
15
|
Dattler D, Fuks G, Heiser J, Moulin E, Perrot A, Yao X, Giuseppone N. Design of Collective Motions from Synthetic Molecular Switches, Rotors, and Motors. Chem Rev 2019; 120:310-433. [PMID: 31869214 DOI: 10.1021/acs.chemrev.9b00288] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Precise control over molecular movement is of fundamental and practical importance in physics, biology, and chemistry. At nanoscale, the peculiar functioning principles and the synthesis of individual molecular actuators and machines has been the subject of intense investigations and debates over the past 60 years. In this review, we focus on the design of collective motions that are achieved by integrating, in space and time, several or many of these individual mechanical units together. In particular, we provide an in-depth look at the intermolecular couplings used to physically connect a number of artificial mechanically active molecular units such as photochromic molecular switches, nanomachines based on mechanical bonds, molecular rotors, and light-powered rotary motors. We highlight the various functioning principles that can lead to their collective motion at various length scales. We also emphasize how their synchronized, or desynchronized, mechanical behavior can lead to emerging functional properties and to their implementation into new active devices and materials.
Collapse
Affiliation(s)
- Damien Dattler
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Gad Fuks
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Joakim Heiser
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Emilie Moulin
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Alexis Perrot
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Xuyang Yao
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Nicolas Giuseppone
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| |
Collapse
|
16
|
Okamura K, Inagaki Y, Momma H, Kwon E, Setaka W. Gear Slippage in Molecular Bevel Gears Bridged with a Group 14 Element. J Org Chem 2019; 84:14636-14643. [PMID: 31610124 DOI: 10.1021/acs.joc.9b02214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Ditriptycilmethanes are known as molecular bevel gears because the two triptycil groups show correlated rotation. In this report, molecular bevel gears bridged with a group 14 element, bis(methyltriptycil)X (X = SiH2, GeH2, GeF2), were synthesized, and their gearing properties were investigated. Gear slippage, that is an error in gear rotation, is observed in high-temperature solutions of molecular bevel gears. Heavy atom derivatives undergo gear slippage more easily due to the long bond lengths and wide angles between the two triptycil units and the bridging group 14 element. Activation energies of gear slippages were estimated by temperature-dependent NMR spectroscopy and DFT calculations, and theoretical thermodynamic parameters for gear slippage were found to be in excellent agreement with experimental values. The results indicate that theoretical calculations for gear rotation in molecular bevel gears can accurately reproduce experimental phenomena.
Collapse
Affiliation(s)
- Kazuma Okamura
- Division of Applied Chemistry, Faculty of Urban Environmental Sciences , Tokyo Metropolitan University , 1-1 minami-Osawa , Hachioji, Tokyo 192-0397 , Japan
| | - Yusuke Inagaki
- Division of Applied Chemistry, Faculty of Urban Environmental Sciences , Tokyo Metropolitan University , 1-1 minami-Osawa , Hachioji, Tokyo 192-0397 , Japan
| | - Hiroyuki Momma
- Research and Analytical Center for Giant Molecules, Graduate School of Science , Tohoku University , Aoba-ku, Sendai 980-8578 , Japan
| | - Eunsang Kwon
- Research and Analytical Center for Giant Molecules, Graduate School of Science , Tohoku University , Aoba-ku, Sendai 980-8578 , Japan
| | - Wataru Setaka
- Division of Applied Chemistry, Faculty of Urban Environmental Sciences , Tokyo Metropolitan University , 1-1 minami-Osawa , Hachioji, Tokyo 192-0397 , Japan
| |
Collapse
|
17
|
Goswami A, Saha S, Biswas PK, Schmittel M. (Nano)mechanical Motion Triggered by Metal Coordination: from Functional Devices to Networked Multicomponent Catalytic Machinery. Chem Rev 2019; 120:125-199. [DOI: 10.1021/acs.chemrev.9b00159] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Abir Goswami
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Suchismita Saha
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Pronay Kumar Biswas
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and Engineering, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Strase 2, D-57068 Siegen, Germany
| |
Collapse
|
18
|
Toyota S, Kawahata K, Sugahara K, Oki T, Iwanaga T. Quadruple and Sextuple Triptycene Gears in Macrocyclic Frameworks. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shinji Toyota
- Department of Chemistry, School of ScienceTokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8551 Japan
| | - Kenta Kawahata
- Department of Chemistry, Faculty of ScienceOkayama University of Science 1-1 Ridaicho, Kita-ku Okayama 700-0005 Japan
| | - Kota Sugahara
- Department of Chemistry, Faculty of ScienceOkayama University of Science 1-1 Ridaicho, Kita-ku Okayama 700-0005 Japan
| | - Tomohiro Oki
- Department of Chemistry, Faculty of ScienceOkayama University of Science 1-1 Ridaicho, Kita-ku Okayama 700-0005 Japan
| | - Tetsuo Iwanaga
- Department of Chemistry, Faculty of ScienceOkayama University of Science 1-1 Ridaicho, Kita-ku Okayama 700-0005 Japan
| |
Collapse
|
19
|
Wei TB, Ma XQ, Fan YQ, Jiang XM, Dong HQ, Yang QY, Zhang YF, Yao H, Lin Q, Zhang YM. Aggregation-induced emission supramolecular organic framework (AIE SOF) gels constructed from tri-pillar[5]arene-based foldamer for ultrasensitive detection and separation of multi-analytes. SOFT MATTER 2019; 15:6753-6758. [PMID: 31397832 DOI: 10.1039/c9sm01385g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, a novel aggregation-induced emission supramolecular organic framework (AIE SOF) with ultrasensitive response, termed FSOF, was constructed using a tri-pillar[5]arene-based foldamer. Interestingly, benefiting from the noise signal shielding properties of FSOF as well as the competition between the cationπ and ππ interactions, the FSOF shows an ultrasensitive response for multi-analytes, such as Fe3+, Hg2+ and Cr3+. The limits of detection (LODs) of the FSOF for Fe3+, Hg2+ and Cr3+ are in the range of 9.40 × 10-10-1.86 × 10-9. More importantly, the xerogel of FSOF exhibits porous mesh structures, which could effect high-efficiency separation above metal ions from their aqueous solution, with adsorption percentages in the range 92.39-99.99%. In addition, by introducing metal ions into the FSOF, a series of metal ions coordinated supramolecular organic frameworks (MSOFs) were successfully constructed. Moreover, MSOFs show selective fluorescence "turn on" ultrasensitive detection CN- (LOD = 2.12 × 10-9) and H2PO4- (LOD = 1.78 × 10-9). This is a novel approach to construct SOFs through a tri-pillar[5]arene-based foldamer, and also provides a new way to achieve ultrasensitive detection and high-efficiency separation.
Collapse
Affiliation(s)
- Tai-Bao Wei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Locke GM, Bernhard SSR, Senge MO. Nonconjugated Hydrocarbons as Rigid-Linear Motifs: Isosteres for Material Sciences and Bioorganic and Medicinal Chemistry. Chemistry 2019; 25:4590-4647. [PMID: 30387906 DOI: 10.1002/chem.201804225] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/20/2018] [Indexed: 01/02/2023]
Abstract
Nonconjugated hydrocarbons, like bicyclo[1.1.1]pentane, bicyclo[2.2.2]octane, triptycene, and cubane are a unique class of rigid linkers. Due to their similarity in size and shape they are useful mimics of classic benzene moieties in drugs, so-called bioisosteres. Moreover, they also fulfill an important role in material sciences as linear linkers, in order to arrange various functionalities in a defined spatial manner. In this Review article, recent developments and usages of these special, rectilinear systems are discussed. Furthermore, we focus on covalently linked, nonconjugated linear arrangements and discuss the physical and chemical properties and differences of individual linkers, as well as their application in material and medicinal sciences.
Collapse
Affiliation(s)
- Gemma M Locke
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| | - Stefan S R Bernhard
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| | - Mathias O Senge
- School of Chemistry, SFI Tetrapyrrole Laboratory, Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| |
Collapse
|
21
|
Meng H, Zhao C, Nie M, Wang C, Wang T. Triptycene molecular rotors mounted on metallofullerene Sc 3C 2@C 80 and their spin-rotation couplings. NANOSCALE 2018; 10:18119-18123. [PMID: 30238937 DOI: 10.1039/c8nr06045b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Molecular machines have received considerable attention due to their various applications. Except for mechanical motion, it is essential to design advanced molecular machines with integrated functions. In this study, the triptycene rotor has been covalently linked to paramagnetic metallofullerene Sc3C2@C80 with an unpaired electron spin, resulting in a coupled system between spin flip and rotor speed. Two types of triptycene rotors were employed, one is pristine triptycene and another one has a sterically hindered methyl group. Temperature-dependent electron paramagnetic resonance (EPR) spectroscopy revealed that spin-rotor coupling can be modulated by the rotation speed of triptycene rotors, which was further illustrated by variable-temperature 1H NMR. EPR simulation revealed that the rotations of the attached triptycene rotors can greatly influence the spin relaxation and spin-metal hyperfine couplings of Sc3C2@C80, realizing remote control on neighboring electron spin states. These findings of the coupled system between the molecular rotor and spin flip would provide an approach to design advanced molecular machines with magnetic function.
Collapse
Affiliation(s)
- Haibing Meng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | | | |
Collapse
|
22
|
Schettini R, Costabile C, Della Sala G, Iuliano V, Tedesco C, Izzo I, De Riccardis F. Cation-Induced Molecular Switching Based on Reversible Modulation of Peptoid Conformational States. J Org Chem 2018; 83:12648-12663. [DOI: 10.1021/acs.joc.8b01990] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rosaria Schettini
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Salerno 84084, Italy
| | - Chiara Costabile
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Salerno 84084, Italy
| | - Giorgio Della Sala
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Salerno 84084, Italy
| | - Veronica Iuliano
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Salerno 84084, Italy
| | - Consiglia Tedesco
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Salerno 84084, Italy
| | - Irene Izzo
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Salerno 84084, Italy
| | - Francesco De Riccardis
- Department of Chemistry and Biology “A. Zambelli”, University of Salerno, Via Giovanni Paolo II, 132, Fisciano, Salerno 84084, Italy
| |
Collapse
|