1
|
Zhang B, Yuan HH, Sun J, Xun H, Wang J, Qiu F, Wang JJ, Yao X, Wang J, Fan W, Tang F. Five new glycosides from the culms of Phyllostachys nigra var. henonis. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1421-1429. [PMID: 38963070 DOI: 10.1080/10286020.2024.2366450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
Five new glycosides, namely methyl 3-methoxybenzoate-4,5-di-O-β-D-glucopyranoside (1), (1aS,3aS,3R)-3-(4'-O-β-D-glucopyranosyl-3'-methoxyphenyl)-5,6-dioxa-bicyclo[3.3.0]octane-1-one (2), quinolin-4(1H)-one-3-O-β-D-glucopyranoside (3), 3-methoxy-propiophenone 4-O-(6'-β-D-xylopyranosyl)-β-D-glucopyranoside (4), methyl 3-methoxybenzoate 4-O-(6'-β-D-xylopyranosyl)-β-D-glucopyranoside (5), and one known compound, bambulignan B (6) were isolated from the culms of Phyllostachys nigra var. henonis. Their structures were determined using spectroscopic analysis. All compounds were evaluated for their DPPH radical scavenging activity. Compound 6 exhibited antioxidant activity with IC50 value of 59.5 μM (positive control, L-ascorbic acid, IC50 = 12.4 μM; 2,6-ditertbutyl-4-methyl phenol, IC50 = 11.8 μM).
Collapse
Affiliation(s)
- Bao Zhang
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Hai-Hua Yuan
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Jia Sun
- Eurofins Agroscience Services, Hercules, CA 94547, USA
| | - Hang Xun
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Jie Wang
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Feng Qiu
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Jian-Jun Wang
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Xi Yao
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Jin Wang
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Wei Fan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Feng Tang
- Key Laboratory of National Forestry and Grassland Administration, Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| |
Collapse
|
2
|
Jin X, Du X, Liu G, Jin B, Cao K, Chen F, Huang Q. Efficient destruction of basic organo-nitrogenous compounds in liquid hydrocarbon fuel using ascorbic acid/H 2O 2 system under ambient condition. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132242. [PMID: 37562355 DOI: 10.1016/j.jhazmat.2023.132242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/25/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Due to the limitations of the conventional refinery methods, development of a new method such as oxidative denitrogenation (ODN) is highly desirable. This study described a novel ODN to remove organo-nitrogenous compounds (ONCs) in liquid fuel by ascorbic acid (AscH2) and H2O2 redox system under ambient conditions. Seven ONCs including pyridine, quinoline, acridine, 7,8-benzoquinoline, indole, N-methylpyrrolidone (NMP), and N,N-dimethylformamide (DMF) were chosen to assess the fuel-denitrified ability of the AscH2/H2O2 system. The results showed that the basic group of ONCs (pyridine, quinoline, and acridine) can be effectively removed (removal ratio > 95 %) while the removal efficiency of water-soluble compounds (7,8-benzoquinoline, NMP, and DMF) was moderate (61-68 %) under a mild temperature (30 °C) and atmospheric pressure. Free radical quenching and electron paramagnetic resonance experiments confirmed that hydroxyl and AscH2 radicals played a major role in the degradation of ONCs. The degraded products of quinoline were analyzed by gas chromatography-mass spectroscopy and ion chromatography. Based on the identified intermediate products, a putative reaction pathway majorly involving three steps of N-onium formation, transfer hydrogenation, and free radical oxidative ring-opening was suggested for the quinoline degradation. The presented approach can be performed at a normal temperature and pressure and will live up to expectations in the pre-denitrogenation and selective removal of basic ONCs in fuel oils.
Collapse
Affiliation(s)
- Xin Jin
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming 650091, PR China
| | - Xiaohu Du
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming 650091, PR China
| | - Guangrong Liu
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming 650091, PR China
| | - Bangheng Jin
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming 650091, PR China
| | - Kaihong Cao
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming 650091, PR China
| | - Fangyue Chen
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming 650091, PR China
| | - Qiang Huang
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, School of Materials and Energy, Yunnan University, Kunming 650091, PR China.
| |
Collapse
|
3
|
Wang H, Zhao JF, Zhu XL, Tian QQ, He W. Photoinduced Borylation of the Inert C(sp 3)-O Bond of Alkyl Heteroaryl Ethers. Org Lett 2023; 25:6485-6489. [PMID: 37668383 DOI: 10.1021/acs.orglett.3c02038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
A photoinduced reductive Calkyl-O borylation of alkyl heteroaryl ethers with very negative reduction potential in the presence of 4-dimethylaminopyridine (DMAP) and bis(catecholato)diborane(B2cat2) was developed. Despite the high reducing power, various substrates with liable functional groups were well-tolerated as well as ethers derived from natural products and medicinal-relevant compounds. Mechanistic investigation implied that an intra-single electron transfer process in an electron donor-acceptor complex formed from ethers with the adduct of B2cat2 and DMAP should be involved.
Collapse
Affiliation(s)
- Hua Wang
- Department of Chemistry, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Jing-Feng Zhao
- Department of Chemistry, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Xing-Li Zhu
- Department of Chemistry, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Qin-Qin Tian
- Department of Chemistry, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| | - Wei He
- Department of Chemistry, School of Pharmacy, Air Force Medical University, Xi'an, Shaanxi 710032, People's Republic of China
| |
Collapse
|
4
|
Shi J, Chen Z, Lu Y, Xu S, Wen T, Luo Y, Zhu Z, Chen X. Nucleophilic Dearomatization Strategy to Synthesize Disubstituted 3-Isoquinolinones under Transition Metal-Free Conditions. J Org Chem 2022; 87:13508-13516. [PMID: 35475618 DOI: 10.1021/acs.joc.2c00561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Herein, a one-pot protocol for constructing the disubstituted isoquinolinone derivatives via the three-component reactions of 3-haloisoquinolines, alkyl halides, and indoles under transition-metal-free conditions is described. The reaction realized the trifunctionalization of isoquinoline via a dearomatization strategy, which displayed high chemical selectivity, excellent functional group tolerance, and a wide range of substrates, and is environmentally friendly. The three-component coupling involves the construction of new C-N, C═O, and C-C bonds in one step.
Collapse
Affiliation(s)
- Jianyi Shi
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Zhichao Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yantong Lu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Shengting Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Tingting Wen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yuehua Luo
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Zhongzhi Zhu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xiuwen Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
5
|
Visible Light-Induced Deoxygenation and Allylation/Vinylation of Pyridyl Ethers. Org Lett 2022; 24:7309-7314. [PMID: 36190797 DOI: 10.1021/acs.orglett.2c02756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The generation of alkyl radicals by deoxygenation of unactivated ethers under visible light catalysis is a hitherto unmet challenge. Herein, we report a visible light-induced deoxygenation of pyridyl ethers via formation of their pyridinium salts. The generated benzylic radicals further react with allyl/alkenyl sulfones to provide a series of coupling products in good to moderate yields. This process is proposed to undergo a reductive quenching cycle, which was elucidated by chemical, optical, and electrical experiments.
Collapse
|
6
|
Murray PD, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chem Rev 2022; 122:2017-2291. [PMID: 34813277 PMCID: PMC8796287 DOI: 10.1021/acs.chemrev.1c00374] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 12/16/2022]
Abstract
We present here a review of the photochemical and electrochemical applications of multi-site proton-coupled electron transfer (MS-PCET) in organic synthesis. MS-PCETs are redox mechanisms in which both an electron and a proton are exchanged together, often in a concerted elementary step. As such, MS-PCET can function as a non-classical mechanism for homolytic bond activation, providing opportunities to generate synthetically useful free radical intermediates directly from a wide variety of common organic functional groups. We present an introduction to MS-PCET and a practitioner's guide to reaction design, with an emphasis on the unique energetic and selectivity features that are characteristic of this reaction class. We then present chapters on oxidative N-H, O-H, S-H, and C-H bond homolysis methods, for the generation of the corresponding neutral radical species. Then, chapters for reductive PCET activations involving carbonyl, imine, other X═Y π-systems, and heteroarenes, where neutral ketyl, α-amino, and heteroarene-derived radicals can be generated. Finally, we present chapters on the applications of MS-PCET in asymmetric catalysis and in materials and device applications. Within each chapter, we subdivide by the functional group undergoing homolysis, and thereafter by the type of transformation being promoted. Methods published prior to the end of December 2020 are presented.
Collapse
Affiliation(s)
- Philip
R. D. Murray
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - James H. Cox
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nicholas D. Chiappini
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Casey B. Roos
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | | | - Benjamin G. Hejna
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Suong T. Nguyen
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Hunter H. Ripberger
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Jacob M. Ganley
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Elaine Tsui
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nick Y. Shin
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Brian Koronkiewicz
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Guanqi Qiu
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
7
|
Hamsath A, Lederberg OL, Cui Q, Shieh M, Lam Y, Brummett BJ, Xu S, Robinson JR, Xian M. Intramolecular tetrazine-acryloyl cycloaddition: chemistry and applications. Chem Sci 2022; 13:10336-10341. [PMID: 36277625 PMCID: PMC9473534 DOI: 10.1039/d2sc04331a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
An unprecedented intramolecular [4 + 2] tetrazine-olefin cycloaddition with α,β-unsaturated substrates was discovered. The reaction produces unique coumarin-dihydropyridazine heterocycles that exhibited strong fluorescence with large Stokes shifts and excellent photo- and pH-stability. This property can be used for reaction analysis. The rate of cycloaddition was found to be solvent dependent and was determined using experimental data with a kinetic modeling software (COPASI) as well as DFT calculations (k1 = 0.64 ± 0.019 s−1 and 4.1 s−1, respectively). The effects of steric and electronic properties of both the tetrazine and α,β-unsaturated carbonyl on the reaction were studied and followed the known trends characteristic of the intermolecular reaction. Based on these results, we developed a “release-then-click” strategy for the ROS triggered release of methylselenenic acid (MeSeOH) and a fluorescent tracer. This strategy was demonstrated in HeLa cells via fluorescence imaging. Tetrazines rapidly react with tethered acrylates/acrylamides to produce fused coumarin derivatives. This template can be used in prodrug designs by depleting toxic α,β-unsaturated byproducts while also producing an imaging agent.![]()
Collapse
Affiliation(s)
- Akil Hamsath
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Oren L. Lederberg
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Qi Cui
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Meg Shieh
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Yannie Lam
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Brock J. Brummett
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Shi Xu
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Jerome R. Robinson
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | - Ming Xian
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
8
|
Aleti RR, Festa AA, Voskressensky LG, Van der Eycken EV. Synthetic Strategies in the Preparation of Phenanthridinones. Molecules 2021; 26:5560. [PMID: 34577030 PMCID: PMC8466741 DOI: 10.3390/molecules26185560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Phenanthridinones are important heterocyclic frameworks present in a variety of complex natural products, pharmaceuticals and displaying wide range of pharmacological actions. Its structural importance has evoked a great deal of interest in the domains of organic synthesis and medicinal chemistry to develop new synthetic methodologies, as well as novel compounds of pharmaceutical interest. This review focuses on the synthesis of phenanthridinone scaffolds by employing aryl-aryl, N-aryl, and biaryl coupling reactions, decarboxylative amidations, and photocatalyzed reactions.
Collapse
Affiliation(s)
- Rajeshwar Reddy Aleti
- Organic Chemistry Department, Science Faculty, RUDN University, Miklukho-Maklaya St., 6, 117198 Moscow, Russia; (R.R.A.); (A.A.F.); (L.G.V.)
| | - Alexey A. Festa
- Organic Chemistry Department, Science Faculty, RUDN University, Miklukho-Maklaya St., 6, 117198 Moscow, Russia; (R.R.A.); (A.A.F.); (L.G.V.)
| | - Leonid G. Voskressensky
- Organic Chemistry Department, Science Faculty, RUDN University, Miklukho-Maklaya St., 6, 117198 Moscow, Russia; (R.R.A.); (A.A.F.); (L.G.V.)
| | - Erik V. Van der Eycken
- Organic Chemistry Department, Science Faculty, RUDN University, Miklukho-Maklaya St., 6, 117198 Moscow, Russia; (R.R.A.); (A.A.F.); (L.G.V.)
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001 Leuven, Belgium
| |
Collapse
|
9
|
Mishra K, Datta Khanal H, Rok Lee Y. Facile
N
‐Formylation of Amines on Magnetic Fe
3
O
4
−CuO Nanocomposites. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kanchan Mishra
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Hari Datta Khanal
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering Yeungnam University Gyeongsan 38541 Republic of Korea
| |
Collapse
|
10
|
Xia WJ, Fan TG, Zhao ZW, Chen X, Wang XX, Li YM. Radical Annulation of 2-Cyanoaryl Acrylamides via C═C Double Bond Cleavage: Access to Amino-Substituted 2-Quinolones. Org Lett 2021; 23:6158-6163. [PMID: 34313448 DOI: 10.1021/acs.orglett.1c02281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel annulation of 2-cyanoaryl acrylamides via C═C double bond cleavage has been developed for facile and efficient access to a broad spectrum of functionalized 4-amino-2-quinolones, which are important N-heterocycles. In this transformation, the solvent THF is demonstrated to play a crucial role, and the addition of alkyl radicals to nitrile, 1,5-hydride shift, and cleavage of the C-C bond are involved in the mechanism.
Collapse
Affiliation(s)
- Wen-Jin Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Tai-Gang Fan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Zhi-Wei Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Xin Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Xiang-Xiang Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Ya-Min Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| |
Collapse
|
11
|
Al-Hilal TA, Hossain MA, Alobaida A, Alam F, Keshavarz A, Nozik-Grayck E, Stenmark KR, German NA, Ahsan F. Design, synthesis and biological evaluations of a long-acting, hypoxia-activated prodrug of fasudil, a ROCK inhibitor, to reduce its systemic side-effects. J Control Release 2021; 334:237-247. [PMID: 33915222 DOI: 10.1016/j.jconrel.2021.04.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023]
Abstract
ROCK, one of the downstream regulators of Rho, controls actomyosin cytoskeleton organization, stress fiber formation, smooth muscle contraction, and cell migration. ROCK plays an important role in the pathologies of cerebral and coronary vasospasm, hypertension, cancer, and arteriosclerosis. Pharmacological-induced systemic inhibition of ROCK affects both the pathological and physiological functions of Rho-kinase, resulting in hypotension, increased heart rate, decreased lymphocyte count, and eventually cardiovascular collapse. To overcome the adverse effects of systemic ROCK inhibition, we developed a bioreductive prodrug of a ROCK inhibitor, fasudil, that functions selectively under hypoxic conditions. By masking fasudil's active site with a bioreductive 4-nitrobenzyl group, we synthesized a prodrug of fasudil that is inactive in normoxia. Reduction of the protecting group initiated by hypoxia reveals an electron-donating substituent that leads to fragmentation of the parent molecule. Under normoxia the fasudil prodrug displayed significantly reduced activity against ROCK compared to its parent compound, but under severe hypoxia the prodrug was highly effective in suppressing ROCK activity. Under hypoxia the prodrug elicited an antiproliferative effect on disease-afflicted pulmonary arterial smooth muscle cells and pulmonary arterial endothelial cells. The prodrug displayed a long plasma half-life, remained inactive in the blood, and produced no drop in systemic blood pressure when compared with fasudil-treated controls. Due to its selective nature, our hypoxia-activated fasudil prodrug could be used to treat diseases where tissue-hypoxia or hypoxic cells are the pathological basis of the disease.
Collapse
Affiliation(s)
- Taslim A Al-Hilal
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA; Department of Pharmaceutical Sciences, The University of Texas at El Paso, El Paso, TX, USA
| | - Mohammad Anwar Hossain
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Ahmed Alobaida
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA; Department of Pharmaceutics, School of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Farzana Alam
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Ali Keshavarz
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Eva Nozik-Grayck
- Department of Pediatrics and Medicine, Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kurt R Stenmark
- Department of Pediatrics and Medicine, Cardiovascular Pulmonary Research Laboratories, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Nadezhda A German
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA
| | - Fakhrul Ahsan
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center School of Pharmacy, Amarillo, TX, USA; Department of Pharmaceutical and Biomedical Sciences, California Northstate University, 9700 West Taron Drive, Elk Grove, CA 95757, USA.
| |
Collapse
|
12
|
Yabuta T, Hayashi M, Matsubara R. Photocatalytic Reductive C-O Bond Cleavage of Alkyl Aryl Ethers by Using Carbazole Catalysts with Cesium Carbonate. J Org Chem 2021; 86:2545-2555. [PMID: 33439026 DOI: 10.1021/acs.joc.0c02663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Methods to activate the relatively stable ether C-O bonds and convert them to other functional groups are desirable. One-electron reduction of ethers is a potentially promising route to cleave the C-O bond. However, owing to the highly negative redox potential of alkyl aryl ethers (Ered < -2.6 V vs SCE), this mode of ether C-O bond activation is challenging. Herein, we report the visible-light-induced photocatalytic cleavage of the alkyl aryl ether C-O bond using a carbazole-based organic photocatalyst (PC). Both benzylic and non-benzylic aryl ethers underwent C-O bond cleavage to form the corresponding phenol products. Addition of Cs2CO3 was beneficial, especially in reactions using a N-H carbazole PC. The reaction was proposed to occur via single-electron transfer (SET) from the excited-state carbazole to the substrate ether. Interaction of the N-H carbazole PC with Cs2CO3 via hydrogen bonding exists, which enables a deprotonation-assisted electron-transfer mechanism to operate. In addition, the Lewis acidic Cs cation interacts with the substrate alkyl aryl ether to activate it as an electron acceptor. The high reducing ability of the carbazole combined with the beneficial effects of Cs2CO3 made this otherwise formidable SET event possible.
Collapse
Affiliation(s)
- Tatsushi Yabuta
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Masahiko Hayashi
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| | - Ryosuke Matsubara
- Department of Chemistry, Graduate School of Science, Kobe University, Nada, Kobe 657-8501, Japan
| |
Collapse
|
13
|
Abstract
Ascorbic acid is the most well-known vitamin found in different types of food. It has
tremendous medical applications in several different fields such as in pharmaceuticals, cosmetics,
and in organic synthesis. Ascorbic acid can be used as a substrate or mediator in organic synthesis.
In this review, we report ascorbic acid-catalyzed reactions in organic synthesis. Several examples
are included in this review to demonstrate that ascorbic acid is a versatile catalyst for the synthesis
of diverse organic compounds. Reactions catalyzed by ascorbic acid are performed in organic or
aqueous media. The ready availability and easy handling features of ascorbic acid make these procedures
highly fascinating.
Collapse
Affiliation(s)
- Aparna Das
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia
| | - Ram Naresh Yadav
- Department of Chemistry, Faculty of Engineering & Technology, Veer Bahadur Singh Purvanchal University, Jaunpur-222003 (UP), India
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences, College of Sciences and Human Studies, Prince Mohammad Bin Fahd University, Al Khobar 31952, Saudi Arabia
| |
Collapse
|
14
|
Konev MO, Cardinale L, Jacobi von Wangelin A. Catalyst-Free N-Deoxygenation by Photoexcitation of Hantzsch Ester. Org Lett 2020; 22:1316-1320. [DOI: 10.1021/acs.orglett.9b04632] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mikhail O. Konev
- Department of Chemistry, University of Hamburg, Martin Luther King Pl 6, 20146 Hamburg, Germany
| | - Luana Cardinale
- Department of Chemistry, University of Hamburg, Martin Luther King Pl 6, 20146 Hamburg, Germany
| | | |
Collapse
|
15
|
Yuan JM, Chen NY, Liao HR, Zhang GH, Li XJ, Gu ZY, Pan CX, Mo DL, Su GF. 3-(Benzo[d]thiazol-2-yl)-4-aminoquinoline derivatives as novel scaffold topoisomerase I inhibitor via DNA intercalation: design, synthesis, and antitumor activities. NEW J CHEM 2020. [DOI: 10.1039/c9nj05846j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Twenty-seven 3-(benzo[d]thiazol-2-yl)-4-aminoquinoline derivatives have been designed and synthesized as topoisomerase I inhibitors.
Collapse
Affiliation(s)
- Jing-Mei Yuan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Nan-Ying Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Hao-Ran Liao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Guo-Hai Zhang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Xiao-Juan Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Zi-Yu Gu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Cheng-Xue Pan
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Dong-Liang Mo
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| | - Gui-Fa Su
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- P. R. China
| |
Collapse
|
16
|
Todorov AR, Aikonen S, Muuronen M, Helaja J. Visible-Light-Photocatalyzed Reductions of N-Heterocyclic Nitroaryls to Anilines Utilizing Ascorbic Acid Reductant. Org Lett 2019; 21:3764-3768. [PMID: 31066563 PMCID: PMC6750875 DOI: 10.1021/acs.orglett.9b01205] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A photoreductive
protocol utilizing [Ru(bpy)3]2+ photocatalyst,
blue light LEDs, and ascorbic acid (AscH2) has been developed
to reduce nitro N-heteroaryls to the corresponding
anilines. Based on experimental and computational results and previous
studies, we propose that the reaction proceeds via proton-coupled
electron transfer between AscH2, photocatalyst, and the
nitro N-heteroaryl. The method offers a green catalytic procedure
to reduce, e.g., 4-/8-nitroquinolines to the corresponding aminoquinolines,
substructures present in important antimalarial drugs.
Collapse
Affiliation(s)
- Aleksandar R Todorov
- Department of Chemistry , University of Helsinki , A.I. Virtasen aukio 1 , 00014 Helsinki , Finland
| | - Santeri Aikonen
- Department of Chemistry , University of Helsinki , A.I. Virtasen aukio 1 , 00014 Helsinki , Finland
| | - Mikko Muuronen
- Department of Chemistry , University of Helsinki , A.I. Virtasen aukio 1 , 00014 Helsinki , Finland
| | - Juho Helaja
- Department of Chemistry , University of Helsinki , A.I. Virtasen aukio 1 , 00014 Helsinki , Finland
| |
Collapse
|
17
|
Liu SW, Gao YJ, Shi Y, Zhou L, Tang X, Cui HL. Synthesis of Benzoindolizines through 1,5-Electrocyclization/Oxidation Cascades. J Org Chem 2018; 83:13754-13764. [DOI: 10.1021/acs.joc.8b02065] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Si-Wei Liu
- Laboratory of Asymmetric Synthesis, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing, 402160, China
| | - Ying-Juan Gao
- Laboratory of Asymmetric Synthesis, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing, 402160, China
| | - Yin Shi
- Laboratory of Asymmetric Synthesis, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing, 402160, China
| | - Lin Zhou
- Laboratory of Asymmetric Synthesis, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing, 402160, China
| | - Xue Tang
- Laboratory of Asymmetric Synthesis, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing, 402160, China
- State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hai-Lei Cui
- Laboratory of Asymmetric Synthesis, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing, 402160, China
| |
Collapse
|
18
|
Synthesis of N-Bridged Pyrido[4,3-d]pyrimidines and Self-Assembly into Twin Rosette Cages and Nanotubes in Organic Media. Sci Rep 2018; 8:15949. [PMID: 30374175 PMCID: PMC6206060 DOI: 10.1038/s41598-018-34080-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 10/07/2018] [Indexed: 11/29/2022] Open
Abstract
Two N-bridged pyrido[4,3-d]pyrimidine derivatives were synthesized toward realization of a self-assembled bis-rosette cage, in organic media. Starting from commercially available malononitrile dimer and dimethyl 5-aminoisophthalate, the target molecules were synthesized in 11 steps using a convergent approach. The final bridged compounds were characterized by nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry. The hierarchical self-assembly of the nanocages into rosette nanotubes and nanobundles was established by electron microscopy and molecular modelling studies.
Collapse
|
19
|
Ghosh G, Belh SJ, Chiemezie C, Walalawela N, Ghogare AA, Vignoni M, Thomas AH, McFarland SA, Greer EM, Greer A. S,S-Chiral Linker Induced U Shape with a Syn-facial Sensitizer and Photocleavable Ethene Group. Photochem Photobiol 2018; 95:293-305. [PMID: 30113068 DOI: 10.1111/php.13000] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 08/06/2018] [Indexed: 11/30/2022]
Abstract
There is a major need for light-activated materials for the release of sensitizers and drugs. Considering the success of chiral columns for the separation of enantiomer drugs, we synthesized an S,S-chiral linker system covalently attached to silica with a sensitizer ethene near the silica surface. First, the silica surface was modified to be aromatic rich, by replacing 70% of the surface groups with (3-phenoxypropyl)silane. We then synthesized a 3-component conjugate [chlorin sensitizer, S,S-chiral cyclohexane and ethene building blocks] in 5 steps with a 13% yield, and covalently bound the conjugate to the (3-phenoxypropyl)silane-coated silica surface. We hypothesized that the chiral linker would increase exposure of the ethene site for enhanced 1 O2 -based sensitizer release. However, the chiral linker caused the sensitizer conjugate to adopt a U shape due to favored 1,2-diaxial substituent orientation; resulting in a reduced efficiency of surface loading. Further accentuating the U shape was π-π stacking between the (3-phenoxypropyl)silane and sensitizer. Semiempirical calculations and singlet oxygen luminescence data provided deeper insight into the sensitizer's orientation and release. This study has lead to insight on modifications of surfaces for drug photorelease and can help lead to the development of miniaturized photodynamic devices.
Collapse
Affiliation(s)
- Goutam Ghosh
- Department of Chemistry, Acadia University, Wolfville, NS, Canada.,Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY
| | - Sarah J Belh
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY
| | - Callistus Chiemezie
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY
| | - Niluksha Walalawela
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY
| | - Ashwini A Ghogare
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY
| | - Mariana Vignoni
- INIFTA, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, La Plata, Argentina
| | - Andrés H Thomas
- INIFTA, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, CCT La Plata-CONICET, La Plata, Argentina
| | - Sherri A McFarland
- Department of Chemistry, Acadia University, Wolfville, NS, Canada.,Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC
| | - Edyta M Greer
- Department of Natural Sciences, Baruch College of the City University of New York, New York, NY
| | - Alexander Greer
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY
| |
Collapse
|
20
|
Alkaloids from Scindapsus officinalis (Roxb.) Schott. and their biological activities. Fitoterapia 2018; 129:54-61. [DOI: 10.1016/j.fitote.2018.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/06/2018] [Accepted: 06/08/2018] [Indexed: 11/20/2022]
|
21
|
Pedron J, Boudot C, Hutter S, Bourgeade-Delmas S, Stigliani JL, Sournia-Saquet A, Moreau A, Boutet-Robinet E, Paloque L, Mothes E, Laget M, Vendier L, Pratviel G, Wyllie S, Fairlamb A, Azas N, Courtioux B, Valentin A, Verhaeghe P. Novel 8-nitroquinolin-2(1H)-ones as NTR-bioactivated antikinetoplastid molecules: Synthesis, electrochemical and SAR study. Eur J Med Chem 2018; 155:135-152. [PMID: 29885575 DOI: 10.1016/j.ejmech.2018.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
Abstract
To study the antiparasitic 8-nitroquinolin-2(1H)-one pharmacophore, a series of 31 derivatives was synthesized in 1-5 steps and evaluated in vitro against both Leishmania infantum and Trypanosoma brucei brucei. In parallel, the reduction potential of all molecules was measured by cyclic voltammetry. Structure-activity relationships first indicated that antileishmanial activity depends on an intramolecular hydrogen bond (described by X-ray diffraction) between the lactam function and the nitro group, which is responsible for an important shift of the redox potential (+0.3 V in comparison with 8-nitroquinoline). With the assistance of computational chemistry, a set of derivatives presenting a large range of redox potentials (from -1.1 to -0.45 V) was designed and provided a list of suitable molecules to be synthesized and tested. This approach highlighted that, in this series, only substrates with a redox potential above -0.6 V display activity toward L. infantum. Nevertheless, such relation between redox potentials and in vitro antiparasitic activities was not observed in T. b. brucei. Compound 22 is a new hit compound in the series, displaying both antileishmanial and antitrypanosomal activity along with a low cytotoxicity on the human HepG2 cell line. Compound 22 is selectively bioactivated by the type 1 nitroreductases (NTR1) of L. donovani and T. brucei brucei. Moreover, despite being mutagenic in the Ames test, as most of nitroaromatic derivatives, compound 22 was not genotoxic in the comet assay. Preliminary in vitro pharmacokinetic parameters were finally determined and pointed out a good in vitro microsomal stability (half-life > 40 min) and a 92% binding to human albumin.
Collapse
Affiliation(s)
- Julien Pedron
- LCC-CNRS Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Clotilde Boudot
- Université de Limoges, UMR INSERM 1094, Neuroépidémiologie Tropicale, Faculté de Pharmacie, 2 rue du Dr Marcland, 87025, Limoges, France
| | - Sébastien Hutter
- IHU Méditerranée Infection, équipe VITROME « Vecteurs, Infections Tropicales et Méditerranéennes, 19-21 boulevard Jean Moulin, 13385, Marseille Cedex 05, France
| | | | | | | | - Alain Moreau
- LCC-CNRS Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Elisa Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Lucie Paloque
- LCC-CNRS Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Michèle Laget
- UMR MD1, U1261, AMU, INSERM, SSA, IRBA, MCT, Marseille, France
| | - Laure Vendier
- LCC-CNRS Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Susan Wyllie
- University of Dundee, School of Life Sciences, Division of Biological Chemistry and Drug Discovery, Dow Street, Dundee, DD1 5EH, Scotland, United Kingdom
| | - Alan Fairlamb
- University of Dundee, School of Life Sciences, Division of Biological Chemistry and Drug Discovery, Dow Street, Dundee, DD1 5EH, Scotland, United Kingdom
| | - Nadine Azas
- IHU Méditerranée Infection, équipe VITROME « Vecteurs, Infections Tropicales et Méditerranéennes, 19-21 boulevard Jean Moulin, 13385, Marseille Cedex 05, France
| | - Bertrand Courtioux
- Université de Limoges, UMR INSERM 1094, Neuroépidémiologie Tropicale, Faculté de Pharmacie, 2 rue du Dr Marcland, 87025, Limoges, France
| | - Alexis Valentin
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, Toulouse, France
| | | |
Collapse
|