1
|
Chen Z, Isbrandt ES, Newman SG. Regioselective Synthesis of α-Vinyl Boronates via a Pd-Catalyzed Mizoroki-Heck Reaction. Org Lett 2024; 26:7723-7727. [PMID: 39213511 DOI: 10.1021/acs.orglett.4c02866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
We report a palladium-catalyzed synthesis of α-vinyl boronates via a regioselective Mizoroki-Heck reaction between aryl triflates and vinyl boronates. This selectivity is achieved by the use of a 1,5-diaza-3,7-diphosphacyclooctane (P2N2) ligand, which results in minimal formation of the more commonly observed (linear) β-product. The choice of base, solvent, and presence of water are shown to be critical for controlling this outcome, with organic bases, nonpolar solvents, and anhydrous conditions favoring the Heck product and suppressing the competitive Suzuki-Miyaura coupling product.
Collapse
Affiliation(s)
- Zichuan Chen
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Eric S Isbrandt
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
2
|
Aziz SMT, Nagarajan S, Sridhar B, Ghosh S, Berrée F. Synthesis of Tetrazolo[5,1- a]isoquinolines via a Suzuki-Miyaura Coupling Reaction/[3 + 2] Cycloaddition Sequence. J Org Chem 2024; 89:8578-8585. [PMID: 38862400 DOI: 10.1021/acs.joc.4c00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
An efficient copper-catalyzed method for the synthesis of tetrazolo[5,1-a]isoquinolines has been developed starting from alkenyl-1,2-bis(boronates). The domino reaction underwent a Suzuki-Miyaura cross-coupling reaction and an azidation followed by an in situ [3 + 2] cycloaddition. Regioselective synthesis has been demonstrated by inverting the Suzuki-Miyaura cross-coupling reaction and the azidation.
Collapse
Affiliation(s)
- Sk Md Tarik Aziz
- Department of Organic Synthesis and Process Chemistry, CSIR - Indian Institute of Chemical Technology, Hyderabad, Tarnaka 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shalini Nagarajan
- Department of Organic Synthesis and Process Chemistry, CSIR - Indian Institute of Chemical Technology, Hyderabad, Tarnaka 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Balasubramanian Sridhar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Department of Analytical Chemistry, CSIR - Indian Institute of Chemical Technology, Hyderabad, Tarnaka 500 007, India
| | - Subhash Ghosh
- Department of Organic Synthesis and Process Chemistry, CSIR - Indian Institute of Chemical Technology, Hyderabad, Tarnaka 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Fabienne Berrée
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, Rennes F-35000, France
| |
Collapse
|
3
|
Ratanlal M, Vankudoth J, Sharma GVM, Mali MA, Carboni B, Berrée F, Ghosh S. Regio- and stereocontrolled synthesis of borylated E-enynes, Z-enediynes and derivatives from alkenyl-1,2-bis-(boronates). Org Biomol Chem 2023; 21:7567-7571. [PMID: 37671616 DOI: 10.1039/d3ob00543g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
An efficient stereo-controlled synthesis of enyne and enediyne derivatives, via sequential Suzuki-Miyaura coupling reactions from easily prepared 1-alkene-1,2-diboronic esters and alkynyl bromides, is reported. The resulting enyne boronic esters were subjected to Borono-Mannich and Suzuki coupling reactions independently to obtain α,β-unsaturated aminoester and tri-substituted olefin derivatives, respectively. Additionally, divergent syntheses of triazole and cyclopropylboronate derivatives are also reported.
Collapse
Affiliation(s)
- Malavath Ratanlal
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India.
| | - Jayaram Vankudoth
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India.
| | - Gangavaram V M Sharma
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India.
| | - Maruti A Mali
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India.
| | - Bertrand Carboni
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Fabienne Berrée
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Subhash Ghosh
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India.
| |
Collapse
|
4
|
Jung Y, Yoo SY, Jin Y, You J, Han S, Yu J, Park Y, Cho SH. Iridium-Catalyzed Chemo-, Diastereo-, and Enantioselective Allyl-Allyl Coupling: Accessing All Four Stereoisomers of (E)-1-Boryl-Substituted 1,5-Dienes by Chirality Pairing. Angew Chem Int Ed Engl 2023; 62:e202218794. [PMID: 36718077 DOI: 10.1002/anie.202218794] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
Here, we report a highly chemo-, diastereo-, and enantioselective allyl-allyl coupling between branched allyl alcohols and α-silyl-substituted allylboronate esters, catalyzed by a chiral iridium complex. The α-silyl-substituted allylboronate esters can be chemoselectively coupled with allyl electrophiles, affording a diverse set of enantioenriched (E)-1-boryl-substituted 1,5-dienes in good yields, with excellent stereoselectivity. By permuting the chiral iridium catalysts and the substrates, we efficiently and selectively obtained all four stereoisomers bearing two consecutive chiral centers. Mechanistic studies via density functional theory calculations revealed the origins of the diastereo- and chemoselectivities, indicating the pivotal roles of the steric interaction, the β-silicon effect, and a rapid desilylation process. Additional synthetic modifications for preparing a variety of enantioenriched compounds containing contiguous chiral centers are also included.
Collapse
Affiliation(s)
- Yongsuk Jung
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 (Republic of, Korea
| | - Seok Yeol Yoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 (Republic of, Korea
| | - Yonghoon Jin
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 (Republic of, Korea
| | - Jaehyun You
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 (Republic of, Korea
| | - Seungcheol Han
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 (Republic of, Korea
| | - Jeongwoo Yu
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 (Republic of, Korea
| | - Yoonsu Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141 (Republic of, Korea
| | - Seung Hwan Cho
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673 (Republic of, Korea
| |
Collapse
|
5
|
Vinoth P, Karuppasamy M, Gupta A, Nagarajan S, Maheswari CU, Sridharan V. Intramolecular oxypalladation-initiated domino sequence: One-pot, two-step regioselective synthesis of isoquinolines. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
Yang X, Yuan C, Ge S. Ligand-enabled stereodivergence in nickel-catalyzed regioselective hydroboration of internal allenes. Chem 2023. [DOI: 10.1016/j.chempr.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
Avakyan EK, Borovleva AA, Pobedinskaya DY, Demidov OP, Ermolenko AP, Larin AN, Borovlev IV. SNH Amidation of 5-Nitroisoquinoline: Access to Nitro- and Nitroso Derivatives of Amides and Ureas on the Basis of Isoquinoline. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227862. [PMID: 36431962 PMCID: PMC9694180 DOI: 10.3390/molecules27227862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
For the first time, amides and ureas based on both 5-nitroisoquinoline and 5-nitrosoisoquinoline were obtained by direct nucleophilic substitution of hydrogen in the 5-nitroisoquinoline molecule. In the case of urea and monosubstituted ureas, only 5-nitrosoisoquinoline-6-amine is formed under anhydrous conditions.
Collapse
|
8
|
Matouš P, Májek M, Kysilka O, Kuneš J, Maříková J, Růžička A, Pour M, Kočovský P. Reaction Outcome Critically Dependent on the Method of Workup: An Example from the Synthesis of 1-Isoquinolones. J Org Chem 2021; 86:8078-8088. [PMID: 34032448 DOI: 10.1021/acs.joc.1c00561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A striking dependence on the method of workup has been found for annulation of benzonitriles ArC≡N to N-methyl 2-toluamide (1), facilitated by n-BuLi (2 equiv): quenching the reaction by a slow addition of water produced the expected 1-isoquinolones 2; by contrast, slow pouring of the reaction mixture into water afforded the cyclic aminals 5 (retaining the NMe group of the original toluamide). The mechanism of the two processes is discussed in terms of the actual H+ concentration in the workup. Both 2 and 5 were then converted into the corresponding 1-chloroisoquinolines 3, coupling of which, mediated by (Ph3P)2NiCl2/Zn, afforded bis-isoquinolines 4.
Collapse
Affiliation(s)
- Petr Matouš
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Michal Májek
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Mlynská dolina, 842 15 Bratislava 4, Slovakia
| | - Ondřej Kysilka
- Trelleborg Bohemia, Akademika Bedrny 531/8a, Věkoše, 500 03 Hradec Králové Czech Republic
| | - Jiří Kuneš
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Jana Maříková
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Aleš Růžička
- Department of General and Inorganic Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 95, 532 10 Pardubice 2, Czech Republic
| | - Milan Pour
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Pavel Kočovský
- Department of Bioorganic and Organic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague 2, Czech Republic.,Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
9
|
Mali M, Jayaram V, Sharma GVM, Ghosh S, Berrée F, Dorcet V, Carboni B. Copper-Mediated Synthesis of ( E)-1-Azido and ( Z)-1,2-Diazido Alkenes from 1-Alkene-1,2-diboronic Esters: An Approach to Mono- and 1,2-Di-(1,2,3-Triazolyl)-Alkenes and Fused Bis-(1,2,3-Triazolo)-Pyrazines. J Org Chem 2020; 85:15104-15115. [PMID: 33151061 DOI: 10.1021/acs.joc.0c01980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A stereoselective and convenient route has been demonstrated to access (Z)-1,2-diazido alkenes from the corresponding 1,2-diboronic esters via a copper-mediated reaction with sodium azide. Alternately, mono-functionalization was regioselectively carried out with trimethylsilyl azide as an azidation reactant. The in situ conversion of bis-azides to the corresponding bis-triazoles can be readily achieved in the presence of copper sulfate and sodium ascorbate, while the modification of the catalytic system opened a new convenient route to bis-triazolo-pyrazines, a new class of fused heterocycles.
Collapse
Affiliation(s)
- Maruti Mali
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - Vankudoth Jayaram
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - Gangavaram V M Sharma
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India
| | - Subhash Ghosh
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500 007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Fabienne Berrée
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Vincent Dorcet
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Bertrand Carboni
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| |
Collapse
|
10
|
Chen J, Shen X, Lu Z. Cobalt‐Catalyzed Markovnikov‐Type Selective Hydroboration of Terminal Alkynes. Angew Chem Int Ed Engl 2020; 60:690-694. [DOI: 10.1002/anie.202012164] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Jieping Chen
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Xuzhong Shen
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Zhan Lu
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| |
Collapse
|
11
|
Chen J, Shen X, Lu Z. Cobalt‐Catalyzed Markovnikov‐Type Selective Hydroboration of Terminal Alkynes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jieping Chen
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Xuzhong Shen
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Zhan Lu
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| |
Collapse
|
12
|
Gujjarappa R, Vodnala N, Malakar CC. Comprehensive Strategies for the Synthesis of Isoquinolines: Progress Since 2008. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000658] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Raghuram Gujjarappa
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| | - Nagaraju Vodnala
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| | - Chandi C. Malakar
- Department of Chemistry National Institute of Technology Manipur Imphal 795004 Manipur India
| |
Collapse
|
13
|
Wu P, Givskov M, Nielsen TE. Reactivity and Synthetic Applications of Multicomponent Petasis Reactions. Chem Rev 2019; 119:11245-11290. [PMID: 31454230 PMCID: PMC6813545 DOI: 10.1021/acs.chemrev.9b00214] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Indexed: 02/06/2023]
Abstract
The Petasis boron-Mannich reaction, simply referred to as the Petasis reaction, is a powerful multicomponent coupling reaction of a boronic acid, an amine, and a carbonyl derivative. Highly functionalized amines with multiple stereogenic centers can be efficiently accessed via the Petasis reaction with high levels of both diastereoselectivity and enantioselectivity. By drawing attention to examples reported in the past 8 years, this Review demonstrates the breadth of the reactivity and synthetic applications of Petasis reactions in several frontiers: the expansion of the substrate scope in the classic three-component process; nonclassic Petasis reactions with additional components; Petasis-type reactions with noncanonical substrates, mechanism, and products; new asymmetric versions assisted by chiral catalysts; combinations with a secondary or tertiary transformation in a cascade- or sequence-specific manner to access structurally complex, natural-product-like heterocycles; and the synthesis of polyhydroxy alkaloids and biologically interesting molecules.
Collapse
Affiliation(s)
- Peng Wu
- Chemical
Genomics Center of the Max Planck Society, Dortmund 44227, Germany
- Department
of Chemical Biology, Max Planck Institute
of Molecular Physiology, Dortmund 44227, Germany
- Chemical
Biology and Therapeutics Science, Broad
Institute of MIT and Harvard, Cambridge, Massachusetts 02142, United States
- Department
of Medicine and Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Copenhagen DK-2100, Denmark
| | - Michael Givskov
- Costerton
Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen DK-2200, Denmark
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Thomas E. Nielsen
- Costerton
Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen DK-2200, Denmark
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
14
|
Highly stereoselective synthesis of (Z)-3-methoxy-1-methyleneisoindoles via DMAP catalyzed cyclization of methyl 2-alkynylbenzimidates. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.04.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Gomez Pinheiro GE, Ihmels H, Dohmen C. Mild Synthesis of Fluorosolvatochromic and Acidochromic 3-Hydroxy-4-pyridylisoquinoline Derivatives from Easily Available Substrates. J Org Chem 2019; 84:3011-3016. [PMID: 30701977 DOI: 10.1021/acs.joc.8b03272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The reaction of sodium cyanate with benzo[ b]quinolizinium substrates at room temperature gave 3-hydroxy-4-pyridyl-isoquinoline derivatives in good yields. Presumably, the overall reaction proceeds through an ANRORC-type sequence, that is, addition of the nucleophile, ring opening, and ring closure. Preliminary photophysical investigation of the parent compound revealed a pronounced sensitivity of its emission properties toward solvent effects and the pH of the medium.
Collapse
Affiliation(s)
- Gabriel E Gomez Pinheiro
- Department of Chemistry and Biology, and Center of Micro and Nanochemistry and Engineering , University of Siegen , Adolf-Reichwein-Str. 2 , 57068 Siegen , Germany
| | - Heiko Ihmels
- Department of Chemistry and Biology, and Center of Micro and Nanochemistry and Engineering , University of Siegen , Adolf-Reichwein-Str. 2 , 57068 Siegen , Germany
| | - Christoph Dohmen
- Department of Chemistry and Biology, and Center of Micro and Nanochemistry and Engineering , University of Siegen , Adolf-Reichwein-Str. 2 , 57068 Siegen , Germany
| |
Collapse
|
16
|
Tukhtaev HB, Ivanov KL, Bezzubov SI, Cheshkov DA, Melnikov MY, Budynina EM. aza-Wittig Reaction with Nitriles: How Carbonyl Function Switches from Reacting to Activating. Org Lett 2019; 21:1087-1092. [DOI: 10.1021/acs.orglett.8b04135] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hamidulla B. Tukhtaev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia
- Institute of Bioorganic Chemistry, Uzbek Academy of Sciences, Mirzo Ulugbek str. 83, Tashkent 100125, Uzbekistan
| | - Konstantin L. Ivanov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia
| | - Stanislav I. Bezzubov
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskiy pr. 31, Moscow 119991, Russia
| | - Dmitry A. Cheshkov
- State Scientific Research Institute of Chemistry and Technology of Organoelement Compounds, Sh. Entuziastov 38, Moscow 105118, Russia
| | - Mikhail Ya. Melnikov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia
| | - Ekaterina M. Budynina
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia
| |
Collapse
|
17
|
One-pot and regioselective synthesis of polysubstituted 3,4-dihydroquinazolines and 4,5-dihydro-3H-1,4-benzodiazepin-3-ones by sequential Ugi/Staudinger/aza-Wittig reaction. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.01.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|