1
|
Seino K, Okano T, Oya K, Katagiri H, Murase T. Helix-to-Disc Conversion of Thia[6]helicenes into Coronenes Facilitated by Sulfur Oxidation and Fluorination. Chemistry 2024; 30:e202402445. [PMID: 39051923 DOI: 10.1002/chem.202402445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 07/27/2024]
Abstract
Helicenes, with their unique helical structures, have long captured the interest of synthetic chemists, not only as end products, but also as versatile platforms for further chemical transformations. However, transforming [6]helicene into planar coronene typically requires harsh conditions and poses significant challenges. Herein, we demonstrate that replacing the terminal benzene ring of [6]helicene with a thiophene ring enables its photochemical transformation into coronene. Sulfur oxidation of the thiophene ring enables the corresponding thermal transformation, and the terminal tetrafluorination of the opposite benzene ring further accelerates this process, yielding 1,2-difluorocoronene, as confirmed by X-ray crystallography. The transformation begins with an intramolecular Diels-Alder reaction, whose activation energy is significantly lowered by these structural changes. Our findings underscore the utility of strategic modifications such as sulfur oxidation and fluorination in promoting this "helix-to-disc" conversion and opening new avenues for synthesizing functional polycyclic aromatics.
Collapse
Affiliation(s)
- Kaito Seino
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata, 990-8560, Japan
| | - Tsubasa Okano
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata, 990-8560, Japan
| | - Koki Oya
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata, 990-8560, Japan
| | - Hiroshi Katagiri
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Takashi Murase
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata, 990-8560, Japan
| |
Collapse
|
2
|
Podgorski MN, Keto AB, Coleman T, Bruning JB, De Voss JJ, Krenske EH, Bell SG. The Oxidation of Oxygen and Sulfur-Containing Heterocycles by Cytochrome P450 Enzymes. Chemistry 2023; 29:e202301371. [PMID: 37338048 DOI: 10.1002/chem.202301371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
The cytochrome P450 (CYP) superfamily of monooxygenase enzymes play important roles in the metabolism of molecules which contain heterocyclic, aromatic functional groups. Here we study how oxygen- and sulfur-containing heterocyclic groups interact with and are oxidized using the bacterial enzyme CYP199A4. This enzyme oxidized both 4-(thiophen-2-yl)benzoic acid and 4-(thiophen-3-yl)benzoic acid almost exclusively via sulfoxidation. The thiophene oxides produced were activated towards Diels-Alder dimerization after sulfoxidation, forming dimeric metabolites. Despite X-ray crystal structures demonstrating that the aromatic carbon atoms of the thiophene ring were located closer to the heme than the sulfur, sulfoxidation was still favoured with 4-(thiophen-3-yl)benzoic acid. These results highlight a preference of this cytochrome P450 enzyme for sulfoxidation over aromatic hydroxylation. Calculations predict a strong preference for homodimerization of the enantiomers of the thiophene oxides and the formation of a single major product, in broad agreement with the experimental data. 4-(Furan-2-yl)benzoic acid was oxidized to 4-(4'-hydroxybutanoyl)benzoic acid using a whole-cell system. This reaction proceeded via a γ-keto-α,β-unsaturated aldehyde species which could be trapped in vitro using semicarbazide to generate a pyridazine species. The combination of the enzyme structures, the biochemical data and theoretical calculations provides detailed insight into the formation of the metabolites formed from these heterocyclic compounds.
Collapse
Affiliation(s)
- Matthew N Podgorski
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Angus B Keto
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld, 4072, Australia
| | - Tom Coleman
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld, 4072, Australia
| | - Elizabeth H Krenske
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Qld, 4072, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
3
|
Shen X, Li M, Zhou T, Huang J. Benzo[
b
]naphtho[1,2‐
d
]thiophene Sulfoxides: Biomimetic Synthesis, Photophysical Properties, and Applications. Angew Chem Int Ed Engl 2022; 61:e202203908. [DOI: 10.1002/anie.202203908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Xian‐Yan Shen
- School of Pharmacy Tongji Medical College Huazhong University of Science and Technology Wuhan 430030, Hubei Province China
| | - Man Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430030, Hubei Province China
| | - Tai‐Ping Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education School of Chemistry and Chemical Engineering Huazhong University of Science and Technology Wuhan 430030, Hubei Province China
| | - Ji‐Rong Huang
- School of Pharmacy Tongji Medical College Huazhong University of Science and Technology Wuhan 430030, Hubei Province China
| |
Collapse
|
4
|
Shen XY, Li M, Zhou TP, Huang JR. Benzo[b]naphtho[1,2‐d]thiophene Sulfoxides: Biomimetic Synthesis, Photophysical Properties, and Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xian-Yan Shen
- Huazhong University of Science and Technology Tongji Medical College School of Pharmacy CHINA
| | - Man Li
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Tai-Ping Zhou
- Huazhong University of Science and Technology School of Chemistry and Chemical Engineering CHINA
| | - Ji-Rong Huang
- Huazhong University of Science and Technology Tongji Medical College School of Pharmacy 13 Hangkong Road 430030 Wuhan CHINA
| |
Collapse
|
5
|
Prasad VK, Pei Z, Edelmann S, Otero-de-la-Roza A, DiLabio GA. BH9, a New Comprehensive Benchmark Data Set for Barrier Heights and Reaction Energies: Assessment of Density Functional Approximations and Basis Set Incompleteness Potentials. J Chem Theory Comput 2021; 18:151-166. [PMID: 34911294 DOI: 10.1021/acs.jctc.1c00694] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The calculation of accurate reaction energies and barrier heights is essential in computational studies of reaction mechanisms and thermochemistry. To assess methods regarding their ability to predict these two properties, high-quality benchmark sets are required that comprise a reasonably large and diverse set of organic reactions. Due to the time-consuming nature of both locating transition states and computing accurate reference energies for reactions involving large molecules, previous benchmark sets have been limited in scope, the number of reactions considered, and the size of the reactant and product molecules. Recent advances in coupled-cluster theory, in particular local correlation methods like DLPNO-CCSD(T), now allow the calculation of reaction energies and barrier heights for relatively large systems. In this work, we present a comprehensive and diverse benchmark set of barrier heights and reaction energies based on DLPNO-CCSD(T)/CBS called BH9. BH9 comprises 449 chemical reactions belonging to nine types common in organic chemistry and biochemistry. We examine the accuracy of DLPNO-CCSD(T) vis-a-vis canonical CCSD(T) for a subset of BH9 and conclude that, although there is a penalty in using the DLPNO approximation, the reference data are accurate enough to serve as a benchmark for density functional theory (DFT) methods. We then present two applications of the BH9 set. First, we examine the performance of several density functional approximations commonly used in thermochemical and mechanistic studies. Second, we assess our basis set incompleteness potentials regarding their ability to mitigate basis set incompleteness errors. The number of data points, the diversity of the reactions considered, and the relatively large size of the reactant molecules make BH9 the most comprehensive thermochemical benchmark set to date and a useful tool for the development and assessment of computational methods.
Collapse
Affiliation(s)
- Viki Kumar Prasad
- Department of Chemistry, University of British Columbia, 3247 University Way, Kelowna, British Columbia, Canada V1V 1V7
| | - Zhipeng Pei
- Department of Chemistry, University of British Columbia, 3247 University Way, Kelowna, British Columbia, Canada V1V 1V7
| | - Simon Edelmann
- Department of Chemistry, University of British Columbia, 3247 University Way, Kelowna, British Columbia, Canada V1V 1V7
| | - Alberto Otero-de-la-Roza
- Departamento de Química Física y Analítica and MALTA Consolider Team, Facultad de Química, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Gino A DiLabio
- Department of Chemistry, University of British Columbia, 3247 University Way, Kelowna, British Columbia, Canada V1V 1V7
| |
Collapse
|
6
|
Zhao F, Yu P, Chen Y, Liu F, Houk KN. π-Facial Stereoselectivity in Acyl Nitroso Cycloadditions to 5,5-Unsymmetrically Substituted Cyclopentadienes: Computational Exploration of Origins of Selectivity and the Role of Substituent Conformations on Selectivity. J Org Chem 2021; 86:17082-17089. [PMID: 34783567 DOI: 10.1021/acs.joc.1c02191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The π-facial selectivity of Diels-Alder cycloadditions of 5-monosubstituted cyclopentadienes is known experimentally and has been extensively studied computationally. Previous studies on 5-monosubstituted cyclopentadienes by the Burnell and Houk groups showed that facial selectivity arises principally from hyperconjugative aromaticity or antiaromaticity of polar groups that cause distortion of the cyclopentadiene; steric effects of nonpolar groups can also be important. We have now explored the stereoselective cycloaddition of 5,5-unsymmetrically substituted cyclopentadienes to an acyl nitroso dienophile reported by Kan and co-workers. Computational studies with M06-2X/6-311+G(d,p) indicate that the stereoselectivity in the cycloadditions of 5,5-unsymmetrically substituted cyclopentadienes is not just a simple combination of effects found for monosubstituted counterparts. Substituent conformations and diene-dienophile steric and electronic interaction effects all influence stereoselectivity. Predictions are made about several as-yet-unstudied cyclopentadiene cycloadditions.
Collapse
Affiliation(s)
- Fengyue Zhao
- College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yu Chen
- College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Fang Liu
- College of Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
7
|
Maujean T, Chataigner I, Girard N, Gulea M, Bonnet D. Endocyclic Enamides Derived from Aza‐Diketopiperazines as Olefin Partners in Povarov Reaction: An Access to Tetracyclic N‐Heterocycles. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Timothé Maujean
- CNRS Laboratoire d'Innovation Thérapeutique, LIT UMR 7200, LabEx Medalis, ITI InnoVec Université de Strasbourg 67000 Strasbourg France
| | - Isabelle Chataigner
- Normandie Université 76000 Rouen France
- CNRS, Laboratoire de Chimie Théorique, LCT UMR 7616 Sorbonne Université 75005 Paris France
| | - Nicolas Girard
- CNRS Laboratoire d'Innovation Thérapeutique, LIT UMR 7200, LabEx Medalis, ITI InnoVec Université de Strasbourg 67000 Strasbourg France
| | - Mihaela Gulea
- CNRS Laboratoire d'Innovation Thérapeutique, LIT UMR 7200, LabEx Medalis, ITI InnoVec Université de Strasbourg 67000 Strasbourg France
| | - Dominique Bonnet
- CNRS Laboratoire d'Innovation Thérapeutique, LIT UMR 7200, LabEx Medalis, ITI InnoVec Université de Strasbourg 67000 Strasbourg France
| |
Collapse
|
8
|
Stewart SG, Harfoot GJ, McRae KJ, Teng Y, Yu LJ, Chen B, Cammi R, Coote ML, Banwell MG, Willis AC. High-Pressure-Promoted and Facially Selective Diels–Alder Reactions of Enzymatically Derived cis-1,2-Dihydrocatechols and Their Acetonide Derivatives: Enantiodivergent Routes to Homochiral and Polyfunctionalized Bicyclo[2.2.2]octenes. J Org Chem 2020; 85:13080-13095. [DOI: 10.1021/acs.joc.0c01767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Scott G. Stewart
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601 Australia
| | - Gwion J. Harfoot
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601 Australia
| | - Kenneth J. McRae
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601 Australia
| | - Yinglai Teng
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou 510632, China
| | - Li-Juan Yu
- Research School of Chemistry, Institute of Advanced Studies and ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, The Australian National University, Canberra, ACT 2601 Australia
| | - Bo Chen
- Donostia International Physics Center, Paseo Manuel de Lardizabal, 4, 20018 Donostia-San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - Roberto Cammi
- Department of Chemical Science, Life Science and Environmental Sustainability, University of Parma, I-43100 Parma, Italy
| | - Michelle L. Coote
- Research School of Chemistry, Institute of Advanced Studies and ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, The Australian National University, Canberra, ACT 2601 Australia
| | - Martin G. Banwell
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601 Australia
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Guangzhou 510632, China
| | - Anthony C. Willis
- Research School of Chemistry, Institute of Advanced Studies, The Australian National University, Canberra, ACT 2601 Australia
| |
Collapse
|
9
|
Kawahara KP, Matsuoka W, Ito H, Itami K. Synthesis of Nitrogen-Containing Polyaromatics by Aza-Annulative π-Extension of Unfunctionalized Aromatics. Angew Chem Int Ed Engl 2020; 59:6383-6388. [PMID: 32011794 DOI: 10.1002/anie.201913394] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/13/2020] [Indexed: 11/11/2022]
Abstract
Nitrogen-containing polycyclic aromatic compounds (N-PACs) are an important class of compounds in materials science. Reported here is a new aza-annulative π-extension (aza-APEX) reaction that allows rapid access to a range of N-PACs in 11-84 % yields from readily available unfunctionalized aromatics and imidoyl chlorides. In the presence of silver hexafluorophosphate, arenes and imidoyl chlorides couple in a regioselective fashion. The follow-up oxidative treatment with p-chloranil affords structurally diverse N-PACs, which are very difficult to synthesize. DFT calculations reveal that the aza-APEX reaction proceeds through the formal [4+2] cycloaddition of an arene and an in situ generated diarylnitrilium salt, with sequential aromatizations having relatively low activation energies. Transformation of N-PACs into nitrogen-doped nanographenes and their photophysical properties are also described.
Collapse
Affiliation(s)
- Kou P Kawahara
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Wataru Matsuoka
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Hideto Ito
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya, 464-8602, Japan
| | - Kenichiro Itami
- Graduate School of Science, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,JST-ERATO, Itami Molecular Nanocarbon Project, Nagoya University, Chikusa, Nagoya, 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
10
|
Kawahara KP, Matsuoka W, Ito H, Itami K. Synthesis of Nitrogen‐Containing Polyaromatics by Aza‐Annulative π‐Extension of Unfunctionalized Aromatics. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913394] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kou P. Kawahara
- Graduate School of ScienceNagoya University Chikusa Nagoya 464-8602 Japan
| | - Wataru Matsuoka
- Graduate School of ScienceNagoya University Chikusa Nagoya 464-8602 Japan
| | - Hideto Ito
- Graduate School of ScienceNagoya University Chikusa Nagoya 464-8602 Japan
- JST-ERATOItami Molecular Nanocarbon ProjectNagoya University Chikusa Nagoya 464-8602 Japan
| | - Kenichiro Itami
- Graduate School of ScienceNagoya University Chikusa Nagoya 464-8602 Japan
- JST-ERATOItami Molecular Nanocarbon ProjectNagoya University Chikusa Nagoya 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM)Nagoya University Chikusa Nagoya 464-8601 Japan
| |
Collapse
|
11
|
Levandowski BJ, Zou L, Houk KN. Hyperconjugative Aromaticity and Antiaromaticity Control the Reactivities and π-Facial Stereoselectivities of 5-Substituted Cyclopentadiene Diels-Alder Cycloadditions. J Org Chem 2018; 83:14658-14666. [PMID: 30395708 DOI: 10.1021/acs.joc.8b02537] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The reactivities and π-facial stereoselectivities of Diels-Alder reactions of 5-substituted cyclopentadienes were studied using density functional theory. Burnell and co-workers previously showed that the π-facial selectivities result from the energies required to distort the reactants into the transition state geometries. We have discovered the origins of these distortions. C5-X σ-donors predistort the cyclopentadiene into an envelope conformation that maximizes the stabilizing hyperconjugative interaction between the C5-X σ-bond and the diene π-system. This envelope conformation geometrically resembles the anti transition state. To minimize the destabilizing effect of negative hyperconjugation, C5-X σ-acceptors predistort in the opposite direction toward an envelope geometry that resembles the syn transition state. We now show how hyperconjugative effects of the C5-X substituent influence the stereoselectivities and have developed a unified model rationalizing the stereoselectivities and reactivities of 5-substituted cyclopentadiene Diels-Alder reactions.
Collapse
Affiliation(s)
- Brian J Levandowski
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States
| | - Lufeng Zou
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States
| | - K N Houk
- Department of Chemistry and Biochemistry , University of California , Los Angeles , California 90095 , United States
| |
Collapse
|
12
|
Highly regio- and Stereoselective Diels–Alder Cycloadditions of α-Alkoxyvinyl(ethoxy)carbene complexes with exo-heterocyclic dienes. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2018.08.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Bhai S, Jana K, Ganguly B. Probing the Structural and Electronic Effects on the Origin of π-Facial Stereoselectivity in 1-Methylphosphole 1-Oxide Cycloadditions and Cyclodimerization. ACS OMEGA 2018; 3:10945-10952. [PMID: 31459205 PMCID: PMC6645475 DOI: 10.1021/acsomega.8b01165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 08/28/2018] [Indexed: 06/10/2023]
Abstract
We have examined the π-facial stereoselectivity in the Diels-Alder reactions of phosphole oxides computationally. The experimentally observed syn-cycloadditions have been rationalized with the Cieplak model and distortion-interaction model. The natural bond orbital analysis suggests that the hyperconjugative interactions are energetically preferred between the antiperiplanar methyl group present in the -P=O unit and the developing incipient (-C-C-) bond in syn-adducts in accordance with the Cieplak model. The distortion-interaction analysis carried out for syn and anti transition states of Diels-Alder reactions of 1-substituted phosphole 1-oxide with different dienophiles reveals that the syn selectivity is favored by distortions and interaction energies compared with the anti selectivity. The formation of a syn adduct is also stabilized by the πCC-σ*PO orbital interaction, and the repulsive n-π interaction destabilizes the anti adduct that leads to the 7.0 kcal/mol thermodynamic preference for the former adduct. Furthermore, the distortion-interaction model rationalizes the formation of stereospecific products in these Diels-Alder reactions, which however is not explicable with the much-debated Cieplak model.
Collapse
|