1
|
Gharpure SJ, Vishwakarma DS, Hajam SA. Lewis-Acid-Catalyzed Reductive Hydroalkoxylation of Propargylic N-Hydroxylamines Gives Stereoselective Access to Isoxazolidines. Org Lett 2023; 25:2525-2530. [PMID: 37015053 DOI: 10.1021/acs.orglett.3c00690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Lewis-acid-catalyzed 5-endo-dig reductive hydroalkoxylation cascade on propargylic N-hydroxylamine gave expedient, stereoselective access to isoxazolidine derivatives. The developed method provides a new approach toward the synthesis of isoxazolidine, a biologically privileged scaffold. The synthetic potential of the developed methodology was demonstrated by synthesizing 1,3-aminoalcohol, 4-aminotetrahydropyran, and sedamine natural products.
Collapse
Affiliation(s)
- Santosh J Gharpure
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | - Showkat A Hajam
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
2
|
Li X, Shui Y, Shen P, Wang YP, Zhang C, Feng C. A novel type of radical-addition-induced β-fragmentation and ensuing remote functionalization. Chem 2022. [DOI: 10.1016/j.chempr.2022.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Chada RR, Kajare RC, Bhandari MC, Mohammed SZ, Khatravath M, Warudikar K, Punna N. Facile access to [1,2]-oxazine derivatives via annulations of aminoxy-tethered 1,7-enynes. Org Biomol Chem 2021; 19:809-821. [PMID: 33403372 DOI: 10.1039/d0ob02279a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient approach for the highly diastereoselective construction of functionalized cyclopenta[d][1,2]oxazines via sequential oxyamination and Pauson-Khand reaction of readily accessible propargylic alcohols has been developed. Furthermore, the ring closing metathesis of these N-O linked 1,7-enynes afforded vinylated-[1,2]oxazines in good yields. The reduction of the N-O bond of the obtained cyclopenta[d][1,2]oxazine is accomplished to access cyclopentenone-based amino alcohols.
Collapse
Affiliation(s)
- Raji Reddy Chada
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Roshan Chandrakant Kajare
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Mayur C Bhandari
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Siddique Z Mohammed
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Mahender Khatravath
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
| | - Kamalkishor Warudikar
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Nagender Punna
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| |
Collapse
|
4
|
Wang X, Lei J, Liu Y, Ye Y, Li J, Sun K. Fluorination and fluoroalkylation of alkenes/alkynes to construct fluoro-containing heterocycles. Org Chem Front 2021. [DOI: 10.1039/d0qo01629b] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review summarize the established strategies through fluorination and fluoroalkylation of alkenes/alkynes for constructing fluoro-containing heterocycles. Reaction scopes, mechanisms and some shortcomings are also discussed.
Collapse
Affiliation(s)
- Xin Wang
- School of Chemistry and Chemical Engineering
- YanTai University
- Yantai
- P. R. China
| | - Jia Lei
- School of Pharmacy
- Harbin University of Commerce
- Harbin
- P. R. China
| | - Yingjie Liu
- School of Pharmacy
- Harbin University of Commerce
- Harbin
- P. R. China
| | - Yong Ye
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Jiazhu Li
- School of Chemistry and Chemical Engineering
- YanTai University
- Yantai
- P. R. China
| | - Kai Sun
- School of Chemistry and Chemical Engineering
- YanTai University
- Yantai
- P. R. China
| |
Collapse
|
5
|
Luo Z, Yang X, Tsui GC. Perfluoroalkylation of Thiosulfonates: Synthesis of Perfluoroalkyl Sulfides. Org Lett 2020; 22:6155-6159. [PMID: 32648444 DOI: 10.1021/acs.orglett.0c02235] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A practical synthesis of perfluoroalkyl sulfides is described. The method employs stable and readily accessible thiosulfonates as new electrophiles with commercial nucleophilic perfluoroalkylating reagents. The mild reaction conditions allow access to a wide variety of both aryl- and alkyl-substituted perfluoroalkyl sulfides amenable to pharmaceutical development. Furthermore, the reaction operation is straightforward, odorless, does not produce toxic wastes, and, therefore should appeal to practitioners in industrial-scale productions.
Collapse
Affiliation(s)
- Ziwei Luo
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Xinkan Yang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Gavin Chit Tsui
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| |
Collapse
|
6
|
Abstract
This paper offers an efficient copper-catalyzed oxidative trifluoromethylation of indoles with low-cost CF3SO2Na via C–H activation. Notably, the use of a base is crucial for the trifluoromethylation of indoles. This reaction proceeds efficiently in good to excellent yields and is tolerance of a broad range of functional groups. Furthermore, melatonin, a medicine for sleep disorders, is converted to its 2-CF3 analogue in 68% yield. Studies of possible reaction pathways suggest that this reaction proceeds through a radical process.
Collapse
|
7
|
Abstract
The favorability of ring closure reactions as per Baldwin rules has gained immense importance recently. This is evident from the current literature such as research articles, reviews, and books that have been published in this area. This review covers the recent applications of 5-endo-dig cyclization in organic synthesis focusing in the last two decades. A variety of 5-membered heterocycles as well as carbocycles could be synthesized via 5-endo-dig cyclization reactions. The important applications of 5-endo-dig cyclization in organic synthesis covering different aspects have been summarized in this review.
Collapse
|
8
|
Li M, Ye Y, He L, Hui M, Ng TB, Wong JH, Tsui GC. Domino Cyclization/Trifluoromethylation of 2‐Alknylphenols for the Synthesis of 3‐(Trifluoromethyl)benzofurans and Evaluation of their Antibacterial and Antifungal Activities. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Mengwan Li
- Department of ChemistryThe Chinese University of Hong Kong
| | - Yibin Ye
- Department of ChemistryThe Chinese University of Hong Kong
| | - Lisi He
- Department of ChemistryThe Chinese University of Hong Kong
| | - Mamie Hui
- Department of MicrobiologyThe Chinese University of Hong Kong
| | - Tzi Bun Ng
- School of Biomedical SciencesThe Chinese University of Hong Kong
| | - Jack Ho Wong
- School of Biomedical SciencesThe Chinese University of Hong Kong
- Shenzhen Research InstituteThe Chinese University of Hong Kong
| | | |
Collapse
|
9
|
Ye Y, Cheung KPS, He L, Tsui GC. Synthesis of 2-(Trifluoromethyl)indoles via Domino Trifluoromethylation/Cyclization of 2-Alkynylanilines. Org Lett 2018; 20:1676-1679. [PMID: 29489379 DOI: 10.1021/acs.orglett.8b00509] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A new method for the synthesis of 2-(trifluoromethyl)indoles using easily accessible 2-alkynylanilines and a well-established fluoroform-derived CuCF3 reagent is described. This method utilizes a domino trifluoromethylation/cyclization strategy to construct the indole cores with no ambiguity of the CF3 position. The intriguing 3-formyl-2-(trifluoromethyl)indoles can also be synthesized by this protocol, which are useful intermediates for the preparation of trifluoromethylated drug analogues. The ultimate CF3 source is the inexpensive industrial byproduct fluoroform.
Collapse
Affiliation(s)
- Yibin Ye
- Department of Chemistry , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong SAR
| | - Kelvin Pak Shing Cheung
- Department of Chemistry , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong SAR
| | - Lisi He
- Department of Chemistry , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong SAR
| | - Gavin Chit Tsui
- Department of Chemistry , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong SAR
| |
Collapse
|
10
|
Ye Y, Cheung KPS, He L, Tsui GC. Domino cyclization/trifluoromethylation of 2-alkynylanilines using fluoroform-derived CuCF3: synthesis of 3-(trifluoromethyl)indoles. Org Chem Front 2018. [DOI: 10.1039/c8qo00191j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A domino cyclization/trifluoromethylation strategy for the construction of indole cores with concomitant installation of a CF3 group is described.
Collapse
Affiliation(s)
- Yibin Ye
- Department of Chemistry
- The Chinese University of Hong Kong
- New Territories
- Hong Kong SAR
| | | | - Lisi He
- Department of Chemistry
- The Chinese University of Hong Kong
- New Territories
- Hong Kong SAR
| | - Gavin Chit Tsui
- Department of Chemistry
- The Chinese University of Hong Kong
- New Territories
- Hong Kong SAR
| |
Collapse
|