1
|
Li W, Wang Y, Xiao Y, Li M, Liu Q, Liang L, Xie W, Wang D, Guan X, Wang L. Simultaneous Dual-Site Identification of 5 mC/8 oG in DNA Triplex Using a Nanopore Sensor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32948-32959. [PMID: 35816657 DOI: 10.1021/acsami.2c08478] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
DNA triplex participates in delivering site-specific epigenetic modifications critical for the regulation of gene expression. Among these marks, 5mC with 8oG functions comprehensively on gene expression. Recently, few research studies have emphasized the necessity of incorporation detection of 5mC with 8oG using one DNA triplex at the same time. Herein, DNA triplex structure was designed and tailored for the site-specific identification of 5mC with 8oG by means of nanopore electroanalysis. The identification was associated with the distinguishable current modulation types caused by DNA unzipping through the nanopore in an electrical field. Results demonstrated that the epigenetic modification proximity to the latch zone or constriction area of the nanopore enables differentiation of modification series at single nucleotide resolution in one DNA triplex, at both physiological and mildly acidic environment. In addition, our nanopore method enables the kinetic and thermodynamic studies to calculate the free energy of modified DNA triplex with applied potentials. Gibbs' energy provided the direct evidence that the DNA triplex with these epigenetic modifications is more stable in acidic environment. Considering modified DNA functions significantly in gene expression, the presented method may provide future opportunities to understand incorporating epigenetic mechanisms of many dysregulated biological processes on the basis of accurate detection.
Collapse
Affiliation(s)
- Wei Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Yunjiao Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Yicen Xiao
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Minghan Li
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Qianshan Liu
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, University of Chinese Academy of Sciences, Chongqing 401147, China
| | - Liyuan Liang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Wanyi Xie
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Deqiang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Xiyun Guan
- Department of Chemistry, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Liang Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
- Chongqing Key Laboratory of Intelligent Medicine Engineering for Hepatopancreatobiliary Diseases, University of Chinese Academy of Sciences, Chongqing 401147, China
| |
Collapse
|
2
|
Boysen G, Nookaew I. Current and Future Methodology for Quantitation and Site-Specific Mapping the Location of DNA Adducts. TOXICS 2022; 10:toxics10020045. [PMID: 35202232 PMCID: PMC8876591 DOI: 10.3390/toxics10020045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 02/01/2023]
Abstract
Formation of DNA adducts is a key event for a genotoxic mode of action, and their presence is often used as a surrogate for mutation and increased cancer risk. Interest in DNA adducts are twofold: first, to demonstrate exposure, and second, to link DNA adduct location to subsequent mutations or altered gene regulation. Methods have been established to quantitate DNA adducts with high chemical specificity and to visualize the location of DNA adducts, and elegant bio-analytical methods have been devised utilizing enzymes, various chemistries, and molecular biology methods. Traditionally, these highly specific methods cannot be combined, and the results are incomparable. Initially developed for single-molecule DNA sequencing, nanopore-type technologies are expected to enable simultaneous quantitation and location of DNA adducts across the genome. Herein, we briefly summarize the current methodologies for state-of-the-art quantitation of DNA adduct levels and mapping of DNA adducts and describe novel single-molecule DNA sequencing technologies to achieve both measures. Emerging technologies are expected to soon provide a comprehensive picture of the exposome and identify gene regions susceptible to DNA adduct formation.
Collapse
Affiliation(s)
- Gunnar Boysen
- Department Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Correspondence:
| | - Intawat Nookaew
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Department Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
3
|
Bhatti H, Jawed R, Ali I, Iqbal K, Han Y, Lu Z, Liu Q. Recent advances in biological nanopores for nanopore sequencing, sensing and comparison of functional variations in MspA mutants. RSC Adv 2021; 11:28996-29014. [PMID: 35478559 PMCID: PMC9038099 DOI: 10.1039/d1ra02364k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022] Open
Abstract
Biological nanopores are revolutionizing human health by the great myriad of detection and diagnostic skills. Their nano-confined area and ingenious shape are suitable to investigate a diverse range of molecules that were difficult to identify with the previous techniques. Additionally, high throughput and label-free detection of target analytes instigated the exploration of new bacterial channel proteins such as Fragaceatoxin C (FraC), Cytolysin A (ClyA), Ferric hydroxamate uptake component A (FhuA) and Curli specific gene G (CsgG) along with the former ones, like α-hemolysin (αHL), Mycobacterium smegmatis porin A (MspA), aerolysin, bacteriophage phi 29 and Outer membrane porin G (OmpG). Herein, we discuss some well-known biological nanopores but emphasize on MspA and compare the effects of site-directed mutagenesis on the detection ability of its mutants in view of the surface charge distribution, voltage threshold and pore-analyte interaction. We also discuss illustrious and latest advances in biological nanopores for past 2-3 years due to limited space. Last but not the least, we elucidate our perspective for selecting a biological nanopore and propose some future directions to design a customized nanopore that would be suitable for DNA sequencing and sensing of other nontrivial molecules in question.
Collapse
Affiliation(s)
- Huma Bhatti
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University No. 2 Sipailou Nanjing 210096 People's Republic of China +86-25-83793283 +86-25-83793283
| | - Rohil Jawed
- School of Life Science and Technology, Southeast University No. 2 Sipailou Nanjing 210096 People's Republic of China
| | - Irshad Ali
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University No. 2 Sipailou Nanjing 210096 People's Republic of China +86-25-83793283 +86-25-83793283
| | - Khurshid Iqbal
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University No. 2 Sipailou Nanjing 210096 People's Republic of China +86-25-83793283 +86-25-83793283
| | - Yan Han
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University No. 2 Sipailou Nanjing 210096 People's Republic of China +86-25-83793283 +86-25-83793283
| | - Zuhong Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University No. 2 Sipailou Nanjing 210096 People's Republic of China +86-25-83793283 +86-25-83793283
| | - Quanjun Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University No. 2 Sipailou Nanjing 210096 People's Republic of China +86-25-83793283 +86-25-83793283
| |
Collapse
|
4
|
Nookaew I, Jenjaroenpun P, Du H, Wang P, Wu J, Wongsurawat T, Moon SH, Huang E, Wang Y, Boysen G. Detection and Discrimination of DNA Adducts Differing in Size, Regiochemistry, and Functional Group by Nanopore Sequencing. Chem Res Toxicol 2020; 33:2944-2952. [PMID: 32799528 DOI: 10.1021/acs.chemrestox.0c00202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chemically induced DNA adducts can lead to mutations and cancer. Unfortunately, because common analytical methods (e.g., liquid chromatography-mass spectrometry) require adducts to be digested or liberated from DNA before quantification, information about their positions within the DNA sequence is lost. Advances in nanopore sequencing technologies allow individual DNA molecules to be analyzed at single-nucleobase resolution, enabling us to study the dynamic of epigenetic modifications and exposure-induced DNA adducts in their native forms on the DNA strand. We applied and evaluated the commercially available Oxford Nanopore Technology (ONT) sequencing platform for site-specific detection of DNA adducts and for distinguishing individual alkylated DNA adducts. Using ONT and the publicly available ELIGOS software, we analyzed a library of 15 plasmids containing site-specifically inserted O6- or N2-alkyl-2'-deoxyguanosine lesions differing in sizes and regiochemistries. Positions of DNA adducts were correctly located, and individual DNA adducts were clearly distinguished from each other.
Collapse
Affiliation(s)
- Intawat Nookaew
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, Arkansas 72205, United States.,Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, Arkansas 72205, United States
| | - Piroon Jenjaroenpun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, Arkansas 72205, United States
| | - Hua Du
- Department of Chemistry, University of California, Riverside 501 Big Springs Road, Riverside, California 92521-0403, United States
| | - Pengcheng Wang
- Department of Chemistry, University of California, Riverside 501 Big Springs Road, Riverside, California 92521-0403, United States
| | - Jun Wu
- Department of Chemistry, University of California, Riverside 501 Big Springs Road, Riverside, California 92521-0403, United States
| | - Thidathip Wongsurawat
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, Arkansas 72205, United States
| | - Sun Hee Moon
- Environmental and Occupational Health, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, Arkansas 72205, United States
| | - En Huang
- Environmental and Occupational Health, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, Arkansas 72205, United States
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside 501 Big Springs Road, Riverside, California 92521-0403, United States
| | - Gunnar Boysen
- Environmental and Occupational Health, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, Arkansas 72205, United States.,Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, Arkansas 72205, United States
| |
Collapse
|
5
|
Tan CS, Fleming AM, Ren H, Burrows CJ, White HS. γ-Hemolysin Nanopore Is Sensitive to Guanine-to-Inosine Substitutions in Double-Stranded DNA at the Single-Molecule Level. J Am Chem Soc 2018; 140:14224-14234. [PMID: 30269492 DOI: 10.1021/jacs.8b08153] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biological nanopores provide a unique single-molecule sensing platform to detect target molecules based on their specific electrical signatures. The γ-hemolysin (γ-HL) protein produced by Staphylococcus aureus is able to assemble into an octamer nanopore with a ∼2.3 nm diameter β-barrel. Herein, we demonstrate the first application of γ-HL nanopore for DNA structural analysis. To optimize conditions for ion-channel recording, the properties of the γ-HL pore (e.g., conductance, voltage-dependent gating, and ion-selectivity) were characterized at different pH, temperature, and electrolyte concentrations. The optimal condition for DNA analysis using γ-HL corresponds to 3 M KCl, pH 5, and T = 20 °C. The γ-HL protein nanopore is able to translocate dsDNA at about ∼20 bp/ms, and the unique current-signature of captured dsDNA can directly distinguish guanine-to-inosine substitutions at the single-molecule level with ∼99% accuracy. The slow dsDNA threading and translocation processes indicate this wild-type γ-HL channel has potential to detect other base modifications in dsDNA.
Collapse
Affiliation(s)
- Cherie S Tan
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0850 , United States
| | - Aaron M Fleming
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0850 , United States
| | - Hang Ren
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0850 , United States
| | - Cynthia J Burrows
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0850 , United States
| | - Henry S White
- Department of Chemistry , University of Utah , 315 South 1400 East , Salt Lake City , Utah 84112-0850 , United States
| |
Collapse
|