1
|
Feng S, Zhang H, Liu J, Shi D, Yang W, Zhu H, Zhang X, Fu Z. Carbene-Catalyzed [3 + 3] Annulation of Enals and Vinyl Sulfoxonium Ylides. J Org Chem 2024; 89:14537-14542. [PMID: 39323184 DOI: 10.1021/acs.joc.4c01587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Carbene-catalyzed [3 + 3] annulation of enals and vinyl sulfoxonium ylides has been demonstrated. This method efficiently synthesizes a range of 2-sulfenylidene-3-cyclohexen-1-ones with high atom economy. Notably, the presence of the sulfoxonium ylide moiety in the obtained products significantly enhances their potential for further synthetic transformations.
Collapse
Affiliation(s)
- Siru Feng
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Hailong Zhang
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Jinhua Liu
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Dongping Shi
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Weiqi Yang
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Haibin Zhu
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xiaoxiang Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenqian Fu
- Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
2
|
Das A, Debnath S, Hota P, Das T, Maiti DK. K 2CO 3-Catalyzed Dual C-C-Coupled Cyclization to 3-Amino-4-benzoylbiphenyls and In Situ I 2-Catalyzed C-N Bond Forming Annulation: A Metal-Free Synthesis of Arylacridones. J Org Chem 2023; 88:12986-12996. [PMID: 37659070 DOI: 10.1021/acs.joc.3c01010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Unprecedented metal-free cyclization catalysis reactions are developed in a highly regioselective fashion to synthesize 3-amino-4-benzoyl biphenyls and arylacridones with high atom economy. Catalytic K2CO3 is utilized as the only reagent for the unusual rapid dual C-C-coupled cyclization between β-keto enamines and cinnamaldehydes to furnish the functionalized biphenyls. Its C(sp2)-H functionalized C-N bond-forming cyclization was performed in situ using molecular I2 as a catalyst to furnish valuable arylacridones. Plausible mechanisms for the new cyclization reactions are predicted by conducting various control experiments and ESI-MS analyses.
Collapse
Affiliation(s)
- Aranya Das
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Sudipto Debnath
- Central Ayurveda Research Institute, CCRAS, Ministry of Ayush, Govt. of India, 4-CN Block, Bidhannagar, Sector-V, Kolkata 700091, India
| | - Poulami Hota
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Tuluma Das
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
3
|
Unveiling the Chemistry and Synthetic Potential of Catalytic Cycloaddition Reaction of Allenes: A Review. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020704. [PMID: 36677762 PMCID: PMC9860688 DOI: 10.3390/molecules28020704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/13/2023]
Abstract
Allenes with two carbon-carbon double bonds belong to a unique class of unsaturated hydrocarbons. The central carbon atom of allene is sp hybridized and forms two σ-bonds and two π-bonds with two terminal sp2 hybridized carbon atoms. The chemistry of allenes has been well documented over the last decades. They are more reactive than alkenes due to higher strain and exhibit significant axial chirality, thus playing a vital role in asymmetric synthesis. Over a variety of organic transformations, allenes specifically undergo classical metal catalyzed cycloaddition reactions to obtain chemo-, regio- and stereoselective cycloadducts. This review briefly describes different types of annulations including [2+2], [2+2+1], [3+2], [2+2+2], [4+2], [5+2], [6+2] cycloadditions using titanium, cobalt, rhodium, nickel, palladium, platinum, gold and phosphine catalyzed reactions along with a mechanistic study of some highlighted protocols. The synthetic applications of these reactions towards the synthesis of natural products such as aristeromycin, ent-[3]-ladderanol, waihoensene(-)-vindoline and (+)-4-epi-vindoline have also been described.
Collapse
|
4
|
Yu JK, Czekelius C. Insights into the Gold‐catalyzed Cycloisomerization of 3‐Allyl‐1,4‐diynes for the Synthesis of Bicyclic Hydrocarbons. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jhen-Kuei Yu
- Heinrich Heine University Düsseldorf: Heinrich-Heine-Universitat Dusseldorf Chemistry GERMANY
| | - Constantin Czekelius
- Heinrich-Heine-Universitat Dusseldorf Organic Chemistry II Building 26.33Room U1.33Universitaetsstrasse 1 40225 Duesseldorf GERMANY
| |
Collapse
|
5
|
Yang Z, Gui H, Shi M. Phosphine‐Catalyzed Substitution of Allenoates with Oxindoles: An Approach to 3‐Allenic or 3‐Dienoic Oxindoles. ChemistrySelect 2021. [DOI: 10.1002/slct.202102930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ze‐ren Yang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Hou‐ze Gui
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals East China University of Science and Technology 130 Mei Long Road Shanghai 200237 China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals East China University of Science and Technology 130 Mei Long Road Shanghai 200237 China
| |
Collapse
|
6
|
Wu P, Ma S. Halogen-Substituted Allenyl Ketones through Ring Opening of Nonstrained Cycloalkanols. Org Lett 2021; 23:2533-2537. [PMID: 33733787 DOI: 10.1021/acs.orglett.1c00452] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
An efficient synthesis of halogen-substituted allenyl ketones via Ag-catalyzed oxidative ring opening of allenyl cyclic alcohols under mild reaction conditions has been achieved. The reaction features a wide substrate scope and excellent regioselectivity. The synthetic potential of the products has been demonstrated by their conversion to stereodefined alkenes and heterocyclic compounds.
Collapse
Affiliation(s)
- Penglin Wu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
7
|
Fragkiadakis M, Kidonakis M, Zorba L, Stratakis M. Synthesis of 3‐Keto Pyridines from the Conjugated Allenone – Alkynylamine Oxidative Cyclization Catalyzed by Supported Au Nanoparticles. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | - Marios Kidonakis
- Department of ChemistryUniversity of Crete Voutes 71003 Heraklion Greece
| | - Leandros Zorba
- Department of ChemistryUniversity of Crete Voutes 71003 Heraklion Greece
| | - Manolis Stratakis
- Department of ChemistryUniversity of Crete Voutes 71003 Heraklion Greece
| |
Collapse
|
8
|
He Y, Feng T, Fan X. Synthesis of Functionalized Indole-1-oxide Derivatives via Cascade Reactions of Allenynes and tBuONO. Org Lett 2019; 21:3918-3922. [DOI: 10.1021/acs.orglett.9b00968] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yan He
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Tian Feng
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuesen Fan
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Environment, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
9
|
Kim S, Matsubara R, Hayashi M. Activated Carbon-Promoted Dehydrogenation of Hydroquinones to Benzoquinones, Naphthoquinones, and Anthraquinones under Molecular Oxygen Atmosphere. J Org Chem 2019; 84:2997-3003. [DOI: 10.1021/acs.joc.8b02961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sanghun Kim
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Ryosuke Matsubara
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Masahiko Hayashi
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
10
|
Li S, Wu XX, Chen S. Base-promoted direct synthesis of functionalized N-arylindoles via the cascade reactions of allenic ketones with indoles. Org Biomol Chem 2019; 17:789-793. [PMID: 30627719 DOI: 10.1039/c8ob02921k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient Cs2CO3-promoted cascade benzannulation reaction of allenic ketones with indoles was achieved for the synthesis of functionalized N-arylindole derivatives under transition-metal-free conditions. A series of readily available starting materials can undergo the process successfully. It represents a practical method for the construction of N-arylindole scaffolds with high atom economy.
Collapse
Affiliation(s)
- Shengxiao Li
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China.
| | | | | |
Collapse
|
11
|
Feng T, He Y, Zhang X, Fan X. Synthesis of Functionalized Cyclobutane‐Fused Naphthalene Derivatives via Cascade Reactions of Allenynes with
tert
‐Butyl Nitrite. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801439] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tian Feng
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of EnvironmentHenan Normal University, Xinxiang Henan 453007 People's Republic of China
| | - Yan He
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of EnvironmentHenan Normal University, Xinxiang Henan 453007 People's Republic of China
| | - Xinying Zhang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of EnvironmentHenan Normal University, Xinxiang Henan 453007 People's Republic of China
| | - Xuesen Fan
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, School of EnvironmentHenan Normal University, Xinxiang Henan 453007 People's Republic of China
| |
Collapse
|
12
|
Yuan H, Tang C, Su S, Cui L, Jia X, Li C, Li J. A bicyclization reaction with two molecular allenyl ketones and isocyanides: synthesis of a lactone-containing azaspirocycle derivative. Chem Commun (Camb) 2019; 55:7231-7234. [DOI: 10.1039/c9cc02785h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel bicyclization reaction of two molecular allenyl ketones and isocyanides has been disclosed. This strategy allows for the construction of structurally complex spirocyclic lactam–lactone systems in an efficient manner.
Collapse
Affiliation(s)
- Hongdong Yuan
- Department of Chemistry
- Center for Supramolecular Chemistry and Catalysis
- College of Sciences & Institute of Sustainable Energy
- Shanghai University
- Shanghai 200444
| | - Chongrong Tang
- Department of Chemistry
- Center for Supramolecular Chemistry and Catalysis
- College of Sciences & Institute of Sustainable Energy
- Shanghai University
- Shanghai 200444
| | - Shikuan Su
- Department of Chemistry
- Center for Supramolecular Chemistry and Catalysis
- College of Sciences & Institute of Sustainable Energy
- Shanghai University
- Shanghai 200444
| | - Lei Cui
- Department of Chemistry
- Center for Supramolecular Chemistry and Catalysis
- College of Sciences & Institute of Sustainable Energy
- Shanghai University
- Shanghai 200444
| | - Xueshun Jia
- Department of Chemistry
- Center for Supramolecular Chemistry and Catalysis
- College of Sciences & Institute of Sustainable Energy
- Shanghai University
- Shanghai 200444
| | - Chunju Li
- Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry
- Ministry of Education
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules
- College of Chemistry
- Tianjin Normal University
| | - Jian Li
- Department of Chemistry
- Center for Supramolecular Chemistry and Catalysis
- College of Sciences & Institute of Sustainable Energy
- Shanghai University
- Shanghai 200444
| |
Collapse
|
13
|
Wang Q, Zhang T, Fan Y, Fan X. Synthesis of functionalized cyclopentenes through allenic ketone-based multicomponent reactions. Org Biomol Chem 2018; 16:8854-8858. [PMID: 30411769 DOI: 10.1039/c8ob02259c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel and efficient synthesis of diversely functionalized cyclopentene derivatives through the multicomponent reactions of 1,2-allenic ketones with 4-chloroacetoacetate and malononitrile/cyanoacetate under mild and metal-free conditions is presented. Mechanistically, the formation of title compounds involves a cascade process including nucleophilic substitution, Michael addition and intramolecular aldol type reaction. Interestingly, when 1-phenyl allenic ketones bearing electron-donating groups on the phenyl ring were reacted with 4-chloroacetoacetate and cyanoacetate, methylenecyclo-pentanes, the regioisomer of cyclopentenes, were formed with good selectivity and high efficiency.
Collapse
Affiliation(s)
- Qiang Wang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Coal Green Conversion, Henan Polytechnic University, Jiaozuo, Henan 454000, P. R. China.
| | | | | | | |
Collapse
|
14
|
Han T, Luo X. Thio-Michael addition of thioamides and allenes for the selective construction of polysubstituted 2-arylthiophenes via TBAI/H 2O 2 promoted tandem oxidative annulation and 1,2-sulfur migration. Org Biomol Chem 2018; 16:8253-8257. [PMID: 30203831 DOI: 10.1039/c8ob01835a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A novel TBAI-catalyzed tandem thio-Michael addition/oxidative annulation of allenes and thioamides for the construction of polysubstituted 2-arylthiophenes under a sulfur migration transformation protocol has been developed. The transition-metal-free protocol achieves the oxidative cyclization reaction of thioamides containing electron-rich substituents with allenes to construct polysubstituted thiophenes selectively by controlling oxidation conditions.
Collapse
Affiliation(s)
- Teng Han
- School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China.
| | | |
Collapse
|
15
|
Zhou S, Yan BW, Fan SX, Tian JS, Loh TP. Regioselective Formal [4 + 2] Cycloadditions of Enaminones with Diazocarbonyls through Rh III-Catalyzed C-H Bond Functionalization. Org Lett 2018; 20:3975-3979. [PMID: 29888603 DOI: 10.1021/acs.orglett.8b01540] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A regioselective formal [4 + 2] cycloaddition for the assembly of highly functionalized benzene rings was successfully developed. In this reaction, olefinic C-H bond functionalization/cyclization cascade reaction followed by rearomatization led to the desired molecules in one step under mild reaction conditions. This protocol also displays a broad substrate scope and good tolerance to a wide range of functional groups. Additionally, the potential utility for the synthesis of highly conjugated polybenzenes and diversification of natural products was also demonstrated.
Collapse
Affiliation(s)
- Shuguang Zhou
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China
| | - Bi-Wei Yan
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China
| | - Shuai-Xin Fan
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China
| | - Jie-Sheng Tian
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China
| | - Teck-Peng Loh
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering (SCME), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing Tech University (NanjingTech) , 30 South Puzhu Road , Nanjing 211816 , P. R. China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , Singapore 637371 , Singapore.,Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , P. R. China
| |
Collapse
|