1
|
Arena D, Verde-Sesto E, Rivilla I, Pomposo JA. Artificial Photosynthases: Single-Chain Nanoparticles with Manifold Visible-Light Photocatalytic Activity for Challenging "in Water" Organic Reactions. J Am Chem Soc 2024; 146:14397-14403. [PMID: 38639303 PMCID: PMC11140743 DOI: 10.1021/jacs.4c02718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024]
Abstract
Photocatalyzed reactions of organic substances in aqueous media are challenging transformations, often because of scarce solubility of substrates and catalyst deactivation. Herein, we report single-chain nanoparticles, SCNPs, capable of efficiently catalyzing four different "in water" organic reactions by employing visible light as the only external energy source. Specifically, we decorated a high-molecular-weight copolymer, poly(OEGMA300-r-AEMA), with iridium(III) cyclometalated complex pendants at varying content amounts. The isolated functionalized copolymers demonstrated self-assembly into noncovalent, amphiphilic SCNPs in water, which enabled efficient visible-light photocatalysis of two reactions unprecedentedly reported in water, namely, [2 + 2] photocycloaddition of vinyl arenes and α-arylation of N-arylamines. Additionally, aerobic oxidation of 9-substituted anthracenes and β-sulfonylation of α-methylstyrene were successfully carried out in aqueous media. Hence, by merging metal-mediated photocatalysis and SCNPs for the fabrication of artificial photoenzyme-like nano-objects─i.e., artificial photosynthases (APS)─our work broadens the possibilities for performing challenging "in water" organic transformations via visible-light photocatalysis.
Collapse
Affiliation(s)
- Davide Arena
- Centro
de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center
MPC, P° Manuel Lardizabal 5, E-20018 Donostia, Spain
| | - Ester Verde-Sesto
- Centro
de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center
MPC, P° Manuel Lardizabal 5, E-20018 Donostia, Spain
- IKERBASQUE-Basque
Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
| | - Iván Rivilla
- IKERBASQUE-Basque
Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
- Departamento
de Química Orgánica I, Centro de Innovación en
Química Avanzada (ORFEO−CINQA), University of the Basque Country (UPV/EHU), Faculty of Chemistry, P° Manuel Lardizabal 3, E-20018 Donostia, Spain
- Donostia
International Physics Center (DIPC), P° Manuel Lardizabal 4, E-20018 Donostia, Spain
| | - José A. Pomposo
- Centro
de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center
MPC, P° Manuel Lardizabal 5, E-20018 Donostia, Spain
- IKERBASQUE-Basque
Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
- Departamento
de Polímeros y Materiales Avanzados: Física, Química
y Tecnología, University of the Basque
Country (UPV/EHU), Faculty of Chemistry, P° Manuel Lardizabal 3, E-20018 Donostia, Spain
| |
Collapse
|
2
|
Budnikov AS, Krylov IB, Lastovko AV, Dolotov RA, Shevchenko MI, Terent'ev AO. The diacetyliminoxyl radical in oxidative functionalization of alkenes. Org Biomol Chem 2023; 21:7758-7766. [PMID: 37698014 DOI: 10.1039/d3ob00925d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The intermolecular oxime radical addition to CC bonds was observed and studied for the first time. The diacetyliminoxyl radical was proposed as a model radical reagent for the study of oxime radical reactivity towards unsaturated substrates, which is important in the light of the active development of synthetic applications of oxime radicals. In the present work it was found that the diacetyliminoxyl radical reacts with vinylarenes and conjugated dienes to give radical addition products, whereas unconjugated alkenes can undergo radical addition or allylic hydrogen substitution by diacetyliminoxyl depending on the substrate structure. Remarkably, substituted alkenes give high yields of C-O coupling products despite the significant steric hindrance, whereas unsubstituted alkenes give lower yields of the C-O coupling products. The observed atypical C-O coupling yield dependence on the alkene structure was explained by the discovered ability of the diacetyliminoxyl radical to attack alkenes with the formation of a C-N bond instead of a C-O bond giving side products. This side process is not expected for sterically hindered alkenes due to lower steric availability of the N-atom in diacetyliminoxyl than that of the O-atom.
Collapse
Affiliation(s)
- Alexander S Budnikov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Igor B Krylov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Andrey V Lastovko
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Roman A Dolotov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Mikhail I Shevchenko
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.
| |
Collapse
|
3
|
Zhang H, Wu J, Zhang X, Fan M. LiBF 4-Promoted Aromatic Fluorodetriazenation under Mild Conditions. J Org Chem 2023; 88:12826-12834. [PMID: 37594375 DOI: 10.1021/acs.joc.3c01239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
An efficient and mild fluorination method through LiBF4-promoted aromatic fluorodetriazenation of 3,3-dimethyl-1-aryltriazenes is developed. The reaction proceeds smoothly and tends to complete within 2 h in the absence of a protic acid or strong Lewis acid. This method tolerates a wide range of functional groups and affords the aryl fluoride products in moderate to excellent yields.
Collapse
Affiliation(s)
- Hongjin Zhang
- Academy of Medical Engineering and Translational Medicine (AMT), Tianjin University, Tianjin 300072, P.R. China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, P.R. China
| | - Jianbo Wu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, P.R. China
| | - Xingxian Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China
| | - Mengyang Fan
- Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310018, P.R. China
| |
Collapse
|
4
|
Cedillo-Cruz A, Martínez-Otero D, Barroso-Flores J, Cuevas-Yañez E. α-(1,2,3-Triazolyl)-acetophenone: Synthesis and theoretical studies of crystal and 2,4-dinitrophenylhydrazine cocrystal structures. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Fernandes RA, Kumar P, Bhowmik A, Gorve DA. Regioselective Disulfide-Catalyzed Photocatalytic Oxidative Cleavage of 1-Arylbutadienes to Cinnamaldehydes. Org Lett 2022; 24:3435-3439. [PMID: 35466681 DOI: 10.1021/acs.orglett.2c00884] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This work discloses a simple, efficient, and environmentally benevolent disulfide-catalyzed photocatalytic regioselective oxidative cleavage of 1-arylbutadienes to cinnamaldehydes. This methodology illustrates mild reaction conditions, ambient temperature, excellent regioselectivity, and compatibility with wide range of functional groups (38 examples). The method gains significance, as few reports with limited substrate scope are available for such excellent photocatalytic oxidative cleavage of conjugated dienes.
Collapse
Affiliation(s)
- Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Praveen Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Amit Bhowmik
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Dnyaneshwar A Gorve
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| |
Collapse
|
6
|
Shee M, Singh NDP. Chemical versatility of azide radical: journey from a transient species to synthetic accessibility in organic transformations. Chem Soc Rev 2022; 51:2255-2312. [PMID: 35229836 DOI: 10.1039/d1cs00494h] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The generation of azide radical (N3˙) occurs from its precursors primarily via a single electron transfer (SET) process or homolytic cleavage by chemical methods or advanced photoredox/electrochemical methods. This in situ generated transient open-shell species has unique characteristic features that set its reactivity. In the past, the azide radical was widely used for various studies in radiation chemistry as a 1e- oxidant of biologically important molecules, but now it is being exploited for synthetic applications based on its addition and intermolecular hydrogen atom transfer (HAT) abilities. Due to the significant role of nitrogen-containing molecules in synthesis, drug discovery, biological, and material sciences, the direct addition onto unsaturated bonds for the simultaneous construction of C-N bond with other (C-X) bonds are indeed worth highlighting. Moreover, the ability to generate O- or C-centered radicals by N3˙ via electron transfer (ET) and intermolecular HAT processes is also well documented. The purpose of controlling the reactivity of this short-lived intermediate in organic transformations drives us to survey: (i) the history of azide radical and its structural properties (thermodynamic, spectroscopic, etc.), (ii) chemical reactivities and kinetics, (iii) methods to produce N3˙ from various precursors, (iv) several significant azide radical-mediated transformations in the field of functionalization with unsaturated bonds, C-H functionalization via HAT, tandem, and multicomponent reaction with a critical analysis of underlying mechanistic approaches and outcomes, (v) concept of taming the reactivity of azide radicals for potential opportunities, in this review.
Collapse
Affiliation(s)
- Maniklal Shee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - N D Pradeep Singh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
7
|
Zheng YN, Zheng H, Li T, Wei WT. Recent Advances in Copper-Catalyzed C-N Bond Formation Involving N-Centered Radicals. CHEMSUSCHEM 2021; 14:5340-5358. [PMID: 34750973 DOI: 10.1002/cssc.202102243] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/09/2021] [Indexed: 06/13/2023]
Abstract
C-N bonds are pervasive throughout organic-based materials, natural products, pharmaceutical compounds, and agricultural chemicals. Considering the widespread importance of C-N bonds, the development of greener and more convenient ways to form C-N bonds, especially in late-stage synthesis, has become one of the hottest research goals in synthetic chemistry. Copper-catalyzed radical reactions involving N-centered radicals have emerged as a sustainable and promising approach to build C-N bonds. As a chemically popular and diverse radical species, N-centered radicals have been used for all kinds of reactions for C-N bond formation by taking advantage of their inherently incredible reactive flexibility. Copper is also the most abundant and economic catalyst with the most relevant activity for facilitating the synthesis of valuable compounds. Therefore, the aim of the present Review was to illustrate recent and significant advances in C-N bond formation methods and to understand the unique advantages of copper catalysis in the generation of N-centered radicals since 2016. To provide an ease of understanding for the readers, this Review was organized based on the types of nitrogen sources (amines, amides, sulfonamides, oximes, hydrazones, azides, and tert-butyl nitrite).
Collapse
Affiliation(s)
- Yan-Nan Zheng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Hongxing Zheng
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, P. R. China
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, 473061, P. R. China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, Henan, 473061, P. R. China
| | - Wen-Ting Wei
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| |
Collapse
|
8
|
Yang G, Wang S, Nie H, Xiong Z, Li X, Ji F, Jiang G. An efficient transition metal‐free difunctionalization of alkenes in water for the green preparation of sulfone compounds. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guang Yang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Shoucai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Hongsheng Nie
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Zhicheng Xiong
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Xuan Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Fanghua Ji
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| | - Guangbin Jiang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering Guilin University of Technology Guilin China
| |
Collapse
|
9
|
Tang C, Qiu X, Cheng Z, Jiao N. Molecular oxygen-mediated oxygenation reactions involving radicals. Chem Soc Rev 2021; 50:8067-8101. [PMID: 34095935 DOI: 10.1039/d1cs00242b] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Molecular oxygen as a green, non-toxic and inexpensive oxidant has displayed lots of advantages compared with other oxidants towards more selective, sustainable, and environmentally benign organic transformations. The oxygenation reactions which employ molecular oxygen or ambient air as both an oxidant and an oxygen source provide an efficient route to the synthesis of oxygen-containing compounds, and have been demonstrated in practical applications such as pharmaceutical synthesis and late-stage functionalization of complex molecules. This review article introduces the recent advances of radical processes in molecular oxygen-mediated oxygenation reactions. Reaction scopes, limitations and mechanisms are discussed based on reaction types and catalytic systems. Conclusions and perspectives are also given in the end.
Collapse
Affiliation(s)
- Conghui Tang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, China.
| | - Xu Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. and State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
10
|
Chen CT, Su YC, Lu CH, Lien CI, Hung SF, Hsu CW, Agarwal R, Modala R, Tseng HM, Tseng PX, Fujii R, Kawashima K, Mori S. Enantioselective Radical Type, 1,2-Oxytrifluoromethylation of Olefins Catalyzed by Chiral Vanadyl Complexes: Importance of Noncovalent Interactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Chien-Tien Chen
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Yu-Cheng Su
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Chia-Hao Lu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Chien-I Lien
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Shiang-Fu Hung
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Chan-Wei Hsu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Rachit Agarwal
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Ramuasagar Modala
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Hung-Min Tseng
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Pin-Xuan Tseng
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Ryoma Fujii
- Institute of Quantum Beam Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, Japan
| | - Kyohei Kawashima
- Institute of Quantum Beam Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, Japan
| | - Seiji Mori
- Institute of Quantum Beam Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, Japan
- Frontier Research Center for Applied Atomic Sciences, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan
| |
Collapse
|
11
|
Affiliation(s)
- Paramasivam Sivaguru
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| | - Yongquan Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
12
|
Aman H, Chiu WH, Liu PH, Chuang GJ. Radical-mediated aerobic oxidation of substituted styrenes and stilbenes. NEW J CHEM 2021. [DOI: 10.1039/d1nj04755h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 2,2-azobis(isobutyronitrile)-catalyzed oxidative cleavage of alkenes with molecular oxygen as the oxidant was described.
Collapse
Affiliation(s)
- Hasil Aman
- Department of Chemistry Chung Yuan Christian University Chungli 32023, Taoyuan city, Taiwan
| | - Wei-Hua Chiu
- Department of Chemistry Chung Yuan Christian University Chungli 32023, Taoyuan city, Taiwan
| | - Pin-Heng Liu
- Department of Chemistry Chung Yuan Christian University Chungli 32023, Taoyuan city, Taiwan
| | - Gary Jing Chuang
- Department of Chemistry Chung Yuan Christian University Chungli 32023, Taoyuan city, Taiwan
| |
Collapse
|
13
|
Li L, Yang L, Li F. Synthesis of 1-(2-Hydroxyphenyl) Dec-2-en-1-One Oxime and Its Flotation and Adsorption Behavior for Malachite. Front Chem 2020; 8:592771. [PMID: 33324613 PMCID: PMC7726417 DOI: 10.3389/fchem.2020.592771] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/13/2020] [Indexed: 11/13/2022] Open
Abstract
A novel collector of 1-(2-hydroxyphenyl) dec-2-en-1-one oxime (HPDO) was synthesized from 2-hydroxy acetophenone and octanal, and its flotation and adsorption behavior for malachite were studied by flotation tests and x-ray photoelectron spectroscopy (XPS) analysis. The flotation results of a single mineral show HPDO is a special collector for malachite. Compared with benzohydroxamic acid (BHA), isobutyl xanthate (SIBX), and dodecylamine (DA), HPDO exhibits excellent flotation performance for malachite and satisfied selectivity against quartz and calcite over a wide pH range. The HPDO with a concentration of 200 mg/L can float 94% malachite at pH 8, while only recovering 7.8% quartz and 28% calcite. XPS data give clear evidence for the formation of a Cu-oxime complex on malachite surfaces after HPDO adsorption.
Collapse
Affiliation(s)
- Liqing Li
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, China
| | - Lin Yang
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, China
| | - Fangxu Li
- Institute of Resources Comprehensive Utilization, Guangdong Academy of Science, Guangzhou, China
| |
Collapse
|
14
|
Shee M, Shah SS, Singh NDP. Photocatalytic Conversion of Benzyl Alcohols/Methyl Arenes to Aryl Nitriles via H‐Abstraction by Azide Radical. Chemistry 2020; 26:14070-14074. [PMID: 32516474 DOI: 10.1002/chem.202001332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/27/2020] [Indexed: 01/11/2023]
Affiliation(s)
- Maniklal Shee
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur West Bengal 721302 India
| | - Sk. Sheriff Shah
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur West Bengal 721302 India
| | - N. D. Pradeep Singh
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur West Bengal 721302 India
| |
Collapse
|
15
|
Chen CT, Chen YP, Tsai BY, Liao YY, Su YC, Chen TC, Lu CH, Fujii R, Kawashima K, Mori S. Vanadyl Species Catalyzed 1,2-Oxidative Trifluoromethylation of Unactivated Olefins. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00370] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chien-Tien Chen
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan ROC
| | - Ya-Pei Chen
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan ROC
| | - Bang-You Tsai
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan ROC
| | - Yi-Ya Liao
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan ROC
| | - Yu-Cheng Su
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan ROC
| | - Tsung-Cheng Chen
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan ROC
| | - Chia-Hao Lu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan ROC
| | - Ryoma Fujii
- Institute of Quantum Beam Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Kyohei Kawashima
- Institute of Quantum Beam Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Seiji Mori
- Institute of Quantum Beam Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| |
Collapse
|
16
|
Hu L, Deng Q, Zhou Y, Zhang X, Xiong Y. Cu2O-catalyzed phosphonyldifluoromethylation of allylic alcohols through a radical 1,2-aryl migration. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.130949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Bhowmik A, Fernandes RA. Iron(III)/O 2-Mediated Regioselective Oxidative Cleavage of 1-Arylbutadienes to Cinnamaldehydes. Org Lett 2019; 21:9203-9207. [PMID: 31693382 DOI: 10.1021/acs.orglett.9b03562] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A simple, efficient, and environmentally benevolent regioselective oxidative cleavage of 1-arylbutadienes to cinnamaldehydes mediated by iron(III) sulfate/O2 has been developed. The reaction offered good yields and excellent regioselectivity and showed good functional group tolerance (31 examples). The method is important, as few reports with limited substrate scope are available for such excellent oxidative cleavage of conjugated dienes.
Collapse
Affiliation(s)
- Amit Bhowmik
- Department of Chemistry , Indian Institute of Technology Bombay , Powai, Mumbai 400076 , Maharashtra , India
| | - Rodney A Fernandes
- Department of Chemistry , Indian Institute of Technology Bombay , Powai, Mumbai 400076 , Maharashtra , India
| |
Collapse
|
18
|
Prasad B, Phanindrudu M, Tiwari DK, Kamal A. Transition-Metal-Free One-Pot Tandem Synthesis of 3-Ketoisoquinolines from Aldehydes and Phenacyl Azides. J Org Chem 2019; 84:12334-12343. [PMID: 31502837 DOI: 10.1021/acs.joc.9b01534] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An efficient and transition-metal-free strategy for the synthesis of 3-keto-isoquinolines in one pot has been developed from the easily accessible 2-(formylphenyl)acrylates and phenacyl azides. Various substituted aldehydes and phenacyl azides were successfully employed in this transformation to furnish a variety 3-keto-isoquinolines in very good yields. A number of controlled experiments were conducted to postulate the reaction mechanism. Secondary functionalizations of 2-keto-isoquinolins were also performed to showcase the synthetic utility.
Collapse
Affiliation(s)
- Budaganaboyina Prasad
- Division of Organic Synthesis and Process Chemistry , CSIR-Indian Institute of Chemical Technology , Hyderabad 500007 , India
| | - Mandalaparthi Phanindrudu
- Division of Organic Synthesis and Process Chemistry , CSIR-Indian Institute of Chemical Technology , Hyderabad 500007 , India
| | - Dharmendra Kumar Tiwari
- Molecular Synthesis and Drug Discovery Laboratory, Center of Biomedical Research , Sanjay Gandhi Post-Graduate Institute of Medical Sciences Campus , Raebareli Road , Lucknow 226014 , India
| | - Ahmed Kamal
- School of Pharmaceutical Education and Research (SPER) , Jamia Hamdard , 110 062 New Delhi , India
| |
Collapse
|
19
|
Dong Z, Gao P, Xiao Y. Efficient selective oxidation of alcohols to aldehydes catalyzed by a morpholinone nitroxide. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1666284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Zhenhua Dong
- College of Chemistry and Chemical Engineering, Academician Workstation for Natural Medicinal Chemistry of Henan Province, Henan University of Technology, Zhengzhou, PR China
| | - Pengwei Gao
- College of Chemistry and Chemical Engineering, Academician Workstation for Natural Medicinal Chemistry of Henan Province, Henan University of Technology, Zhengzhou, PR China
| | - Yongmei Xiao
- College of Chemistry and Chemical Engineering, Academician Workstation for Natural Medicinal Chemistry of Henan Province, Henan University of Technology, Zhengzhou, PR China
| |
Collapse
|
20
|
Hu L, Hussain MI, Deng Q, Liu Q, Feng Y, Zhang X, Xiong Y. I2/Li2CO3-promoted cyanation of diarylalcohols through a dual activation process. Tetrahedron 2019. [DOI: 10.1016/j.tet.2018.11.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Abstract
The azidation–peroxidation of alkenes is developed in the presence of a manganese catalyst.
Collapse
Affiliation(s)
- Yuanjin Chen
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Tian Tian
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| | - Zhiping Li
- Department of Chemistry
- Renmin University of China
- Beijing 100872
- China
| |
Collapse
|
22
|
Dong YX, Li Y, Gu CC, Jiang SS, Song RJ, Li JH. Copper-Catalyzed Three-Components Intermolecular Alkylesterification of Styrenes with Toluenes and Peroxyesters or Acids. Org Lett 2018; 20:7594-7597. [DOI: 10.1021/acs.orglett.8b03330] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ying-Xia Dong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Yang Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Chang-Cheng Gu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Shuai-Shuai Jiang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|