1
|
Lee KS, Barbieri F, Casali E, Marris ET, Zanoni G, Schomaker JM. Elucidating the Mechanism of Electrooxidative Allene Dioxygenation: Dual Role of Tetramethylpiperidine N-Oxyl (TEMPO). J Am Chem Soc 2025; 147:318-330. [PMID: 39680575 DOI: 10.1021/jacs.4c10431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The cumulated π system of a nonsymmetric allene contains three distinct unsaturated carbons that imbue it with unique reactivity toward radicals as compared to its alkene and alkyne counterparts. Despite the synthetic potential of these versatile building blocks, electrochemical transformations of allenes have been historically underexplored. Myriad strategies for easy access to allenes, coupled with the resurgence of interest in sustainable oxidative transformations of hydrocarbons, prompted our efforts to conduct an in-depth investigation of a rare example of an electrochemical TEMPO-mediated allene dioxygenation. The resultant vinyl-TEMPO motif is readily postfunctionalized to install a heteroatom at each allene carbon. Mechanistic investigations, including cyclic voltammetry (CV) studies, computations, and monitoring by operando NMR (ReactNMR) were performed to lay the groundwork for future electrochemical allene functionalizations that deliver unique synthetic building blocks.
Collapse
Affiliation(s)
- Ken S Lee
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Federico Barbieri
- Department of Chemistry, University of Pavia, Via Torquato Taramelli, 12, 27100 Pavia, PV, Italy
| | - Emanuele Casali
- Department of Chemistry, University of Pavia, Via Torquato Taramelli, 12, 27100 Pavia, PV, Italy
| | - Elijah T Marris
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Giuseppe Zanoni
- Department of Chemistry, University of Pavia, Via Torquato Taramelli, 12, 27100 Pavia, PV, Italy
| | - Jennifer M Schomaker
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
2
|
Porras-Santos LF, Sandoval-Lira J, Hernández-Pérez JM, Quintero L, López-Mendoza P, Sartillo-Piscil F. Ferrier Glycosylation Mediated by the TEMPO Oxoammonium Cation. J Org Chem 2024; 89:11281-11292. [PMID: 39102649 PMCID: PMC11334189 DOI: 10.1021/acs.joc.4c00978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The TEMPO oxoammonium cation has been proven to be both an efficient oxidizing reagent and an electrophilic substrate frequently found in organic reactions. Here, we report that this versatile chemical reagent can also be used as an efficient promoter for C- and N-glycosylation reactions through a Ferrier rearrangement with moderate to high yields. This unprecedented reactivity is explained in terms of a Lewis acid activation of glycal by TEMPO+ forming a type of glycal-TEMPO+ mesomeric structure, which occurs through an extended vinylogous hyperconjugation toward the π*(O═N+) orbital [LP(O1) → π*(C1═C2), π*(C1═C2) → σ*(C3-O3), and LP(O6) → π*(O═N+)]. This enables the formation of the respective Ferrier glycosyl cation, which is trapped by various nucleophiles. The extended hyperconjugation (or double hyperconjugation) toward the π*(O═N+) orbital, which confers the Lewis acid character of the TEMPO cation, was supported by natural bond orbital analysis at the M06-2X/6-311+G** level of theory.
Collapse
Affiliation(s)
- Luis F Porras-Santos
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel 72570, Puebla, Mexico
| | - Jacinto Sandoval-Lira
- Departamento de Ciencias Básicas, TecNM campus Instituto Tecnológico Superior de San Martín Texmelucan, Camino a la Barranca de Pesos, San Martín Texmelucan 74120, Puebla, Mexico
| | - Julio M Hernández-Pérez
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel 72570, Puebla, Mexico
| | - Leticia Quintero
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel 72570, Puebla, Mexico
| | - Pedro López-Mendoza
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel 72570, Puebla, Mexico
| | - Fernando Sartillo-Piscil
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel 72570, Puebla, Mexico
| |
Collapse
|
3
|
Abstract
Nitroxides, also known as nitroxyl radicals, are long-lived or stable radicals with the general structure R1R2N-O•. The spin distribution over the nitroxide N and O atoms contributes to the thermodynamic stability of these radicals. The presence of bulky N-substituents R1 and R2 prevents nitroxide radical dimerization, ensuring their kinetic stability. Despite their reactivity toward various transient C radicals, some nitroxides can be easily stored under air at room temperature. Furthermore, nitroxides can be oxidized to oxoammonium salts (R1R2N═O+) or reduced to anions (R1R2N-O-), enabling them to act as valuable oxidants or reductants depending on their oxidation state. Therefore, they exhibit interesting reactivity across all three oxidation states. Due to these fascinating properties, nitroxides find extensive applications in diverse fields such as biochemistry, medicinal chemistry, materials science, and organic synthesis. This review focuses on the versatile applications of nitroxides in organic synthesis. For their use in other important fields, we will refer to several review articles. The introductory part provides a brief overview of the history of nitroxide chemistry. Subsequently, the key methods for preparing nitroxides are discussed, followed by an examination of their structural diversity and physical properties. The main portion of this review is dedicated to oxidation reactions, wherein parent nitroxides or their corresponding oxoammonium salts serve as active species. It will be demonstrated that various functional groups (such as alcohols, amines, enolates, and alkanes among others) can be efficiently oxidized. These oxidations can be carried out using nitroxides as catalysts in combination with various stoichiometric terminal oxidants. By reducing nitroxides to their corresponding anions, they become effective reducing reagents with intriguing applications in organic synthesis. Nitroxides possess the ability to selectively react with transient radicals, making them useful for terminating radical cascade reactions by forming alkoxyamines. Depending on their structure, alkoxyamines exhibit weak C-O bonds, allowing for the thermal generation of C radicals through reversible C-O bond cleavage. Such thermally generated C radicals can participate in various radical transformations, as discussed toward the end of this review. Furthermore, the application of this strategy in natural product synthesis will be presented.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
4
|
Paveliev SA, Segida OO, Mulina OM, Krylov IB, Terent’ev AO. Decatungstate-Catalyzed Photochemical Synthesis of Enaminones from Vinyl Azides and Aldehydes. Org Lett 2022; 24:8942-8947. [DOI: 10.1021/acs.orglett.2c03364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Stanislav A. Paveliev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Oleg O. Segida
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Olga M. Mulina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Igor B. Krylov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Alexander O. Terent’ev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| |
Collapse
|
5
|
Xiong T, Zhou X, Jiang J. Dearomative oxyphosphorylation of indoles enables facile access to 2,2-disubstituted indolin-3-ones. Org Biomol Chem 2022; 20:5721-5725. [PMID: 35842851 DOI: 10.1039/d2ob01063a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly efficient oxidative dearomatization of indoles with H-phosphorus oxides in the presence of TEMPO oxoammonium salt has been demonstrated. Through the intramolecular oxidative dearomatization of indoles and subsequent intermolecular nucleophilic addition with phosphorus nucleophile, a variety of structurally diverse arylphosphoryl and alkylphosphoryl indolin-3-ones were obtained in good yields with a broad substrate scope and high functional-group compatibility.
Collapse
Affiliation(s)
- Ting Xiong
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China.
| | - Xingcui Zhou
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China.
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China.
| |
Collapse
|
6
|
Iwabuchi Y, Nagasawa S. The Utility of Oxoammonium Species in Organic Synthesis: Beyond Alcohol Oxidation. HETEROCYCLES 2022. [DOI: 10.3987/rev-21-sr(r)2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Wang DL, Jiang NQ, Cai ZJ, Ji SJ. Amidation-Ketonization-Selenation of Terminal Alkynes Using TEMPO and Elemental Selenium. J Org Chem 2021; 86:9898-9904. [PMID: 34165301 DOI: 10.1021/acs.joc.1c01066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we present a novel silver- or copper-mediated direct amidation-ketonization-selenation of terminal alkynes for the synthesis of α-oxo-selenoamides. The reaction utilized easily accessible elemental selenium as the source of selenium. In addition, the 18O labeling experiment revealed that TEMPO is the oxygen source of the carbonyl group. The reaction takes advantage of an unsaturated C≡C bond to construct new C═O, C═Se, and C-N bonds in one step.
Collapse
Affiliation(s)
- Dian-Liang Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Nan-Quan Jiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Zhong-Jian Cai
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Shun-Jun Ji
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
8
|
Affiliation(s)
- Paramasivam Sivaguru
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| | - Yongquan Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
9
|
Sen' VD, Golubev VA, Shilov GV, Chernyak AV, Kurmaz VA, Luzhkov VB. Oxygen Atom Transfer in the Oxidation of Dimethyl Sulfoxide by Oxoammonium Cations. J Org Chem 2021; 86:3176-3185. [PMID: 33449678 DOI: 10.1021/acs.joc.0c02526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyclic oxoammonium salts and DMSO are known as important reagents for their diverse and unique reactivity. In the present work, we have studied the reaction of six- and five-membered oxoammonium salts with DMSO. The reaction includes ∼100% selective transfer of the O atom from the >N+═O group to the S atom of DMSO and structural rearrangement of the remaining cationic framework, leading to the formation of hydrolytically unstable iminium salts. The logarithms of the bimolecular rate constants k of the reaction correlated linearly with the reduction potentials E>N+═O/>N-O•, a relationship known for other electrophile-nucleophile combinations. The kinetic data and results of the DFT calculations allow for the suggestion that the studied process proceeds via the prereactive charge-transfer complex >N+═O···S (O)Me2 and its direct concerted rearrangement to the iminium salts. An alternative mechanism that includes intermediate steps with discrete nitrenium cations can be ruled out on the basis of product analysis and DFT computations. The obtained results allow a deeper understanding of the redox chemistry of a pair of nitroxide radicals-oxoammonium cations.
Collapse
Affiliation(s)
- Vasily D Sen'
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russian Federation
| | - Valery A Golubev
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russian Federation
| | - Gennadii V Shilov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russian Federation
| | - Alexander V Chernyak
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russian Federation
| | - Vladimir A Kurmaz
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russian Federation
| | - Victor B Luzhkov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russian Federation.,Department of Fundamental Physico-Chemical Engineering, Lomonosov Moscow State University, Moscow 119991, Russia Federation
| |
Collapse
|
10
|
Li Z, Wang S, Huo Y, Wang B, Yan J, Guo Q. Visible light-driven fluoroalkylthiocyanation of alkenes via electron donor–acceptor complexes. Org Chem Front 2021. [DOI: 10.1039/d1qo00126d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The visible light-induced fluoroalkylthiocyanation of alkenes via electron donor–acceptor complexes of perfluoroalkyl iodide reagents and K3PO4 was disclosed.
Collapse
Affiliation(s)
- Zebiao Li
- School of Basic Medical Science
- Lanzhou University; Research Unit of Peptide Science
- Chinese Academy of Medical Sciences
- Lanzhou 730000
- China
| | - Shan Wang
- School of Basic Medical Science
- Lanzhou University; Research Unit of Peptide Science
- Chinese Academy of Medical Sciences
- Lanzhou 730000
- China
| | - Yumei Huo
- School of Basic Medical Science
- Lanzhou University; Research Unit of Peptide Science
- Chinese Academy of Medical Sciences
- Lanzhou 730000
- China
| | - Bing Wang
- Changzhou Pharmaceutical Factory Co
- Ltd
- Changzhou
- China
| | - Jun Yan
- Changzhou Pharmaceutical Factory Co
- Ltd
- Changzhou
- China
| | - Quanping Guo
- School of Basic Medical Science
- Lanzhou University; Research Unit of Peptide Science
- Chinese Academy of Medical Sciences
- Lanzhou 730000
- China
| |
Collapse
|
11
|
Millimaci AM, Meador RIL, Dampf SJ, Chisholm JD. Metal Free Amino‐Oxidation of Electron Rich Alkenes Mediated by an Oxoammonium Salt. Isr J Chem 2020. [DOI: 10.1002/ijch.202000080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Alexandra M. Millimaci
- Department of Chemistry Syracuse University, 1-014 Center for Science and Technology Syracuse NY 13244
| | - Rowan I. L. Meador
- Department of Chemistry Syracuse University, 1-014 Center for Science and Technology Syracuse NY 13244
| | - Sara J. Dampf
- Department of Chemistry Syracuse University, 1-014 Center for Science and Technology Syracuse NY 13244
| | - John D. Chisholm
- Department of Chemistry Syracuse University, 1-014 Center for Science and Technology Syracuse NY 13244
| |
Collapse
|
12
|
Lin L, Liang Q, Kong X, Chen Q, Xu B. Electrochemical Tandem Fluoroalkylation-Cyclization of Vinyl Azides: Access to Trifluoroethylated and Difluoroethylated N-Heterocycles. J Org Chem 2020; 85:15708-15716. [PMID: 33226809 DOI: 10.1021/acs.joc.0c02213] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A transition-metal- and oxidant-free electrochemical strategy for radical fluoroalkylation of vinyl azides was developed. The reaction was carried out under mild conditions by using inexpensive and bench-stable RfSO2Na (Rf = CF3, CF2H) as fluorination reagents. Depending on the starting material, both the electrochemical radical cyclization and dearomatization products could be obtained. This method provides a green and safe approach to synthesize fluorinated nitrogen heterocycles.
Collapse
Affiliation(s)
- Long Lin
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Qi Liang
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xianqiang Kong
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.,School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Qianjin Chen
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Bo Xu
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
13
|
Paveliev SA, Churakov AI, Alimkhanova LS, Segida OO, Nikishin GI, Terent'ev AO. Electrochemical Synthesis of
O
‐Phthalimide Oximes from
α
‐Azido Styrenes
via
Radical Sequence: Generation, Addition and Recombination of Imide‐
N
‐Oxyl and Iminyl Radicals with C−O/N−O Bonds Formation. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000618] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Stanislav A. Paveliev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| | - Artem I. Churakov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| | - Liliya S. Alimkhanova
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| | - Oleg O. Segida
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| | - Gennady I. Nikishin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| | - Alexander O. Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences 47 Leninsky prosp. Moscow 119991 Russian Federation
| |
Collapse
|
14
|
Zhuang H, Li H, Zhang S, Yin Y, Han F, Sun C, Miao C. TEMPO and its derivatives mediated reactions under transition-metal-free conditions. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
15
|
Liu X, Yan X, Yu JH, Tang YD, Wang K, Zhang H. Organocatalytic Asymmetric Dearomative Oxyalkylation of Indoles Enables Access to C2-Quaternary Indolin-3-ones. Org Lett 2019; 21:5626-5629. [DOI: 10.1021/acs.orglett.9b01965] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Xigong Liu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Xue Yan
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Jin-Hai Yu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Ying-De Tang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Kaiming Wang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Hua Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| |
Collapse
|
16
|
Shen MH, Liang XC, Li C, Wu H, Qu HY, Wang FM, Xu HD. Rhodium promoted intramolecular [4 + 2] cycloaddition of 2-azidodiene with alkyne: A transition metal catalysis approach to challenging fused bicyclic vinyl azide. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Wood SH, Etridge S, Kennedy AR, Percy JM, Nelson DJ. The Electrophilic Fluorination of Enol Esters Using SelectFluor: A Polar Two-Electron Process. Chemistry 2019; 25:5574-5585. [PMID: 30724406 DOI: 10.1002/chem.201900029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Indexed: 11/11/2022]
Abstract
The reaction of enol esters with SelectFluor is facile and leads to the corresponding α-fluoroketones under mild conditions and, as a result, this route is commonly employed for the synthesis of medicinally important compounds such as fluorinated steroids. However, despite the use of this methodology in synthesis, the mechanism of this reaction and the influence of structure on reactivity are unclear. A rigorous mechanistic study of the fluorination of these substrates is presented, informed primarily by detailed and robust kinetic experiments. The results of this study implicate a polar two-electron process via an oxygen-stabilised carbenium species, rather than a single-electron process involving radical intermediates. The structure-reactivity relationships revealed here will assist synthetic chemists in deploying this type of methodology in the syntheses of α-fluoroketones.
Collapse
Affiliation(s)
- Susanna H Wood
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - Stephen Etridge
- GMS Manufacturing and Supply, GlaxoSmithKline, Cobden Street, Montrose, DD10 8EA, UK
| | - Alan R Kennedy
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - Jonathan M Percy
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| | - David J Nelson
- WestCHEM Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, UK
| |
Collapse
|
18
|
Liu X, Yan X, Tang Y, Jiang CS, Yu JH, Wang K, Zhang H. Direct oxidative dearomatization of indoles: access to structurally diverse 2,2-disubstituted indolin-3-ones. Chem Commun (Camb) 2019; 55:6535-6538. [DOI: 10.1039/c9cc02956g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Described is an efficient oxidative dearomatization of indoles with TEMPO oxoammonium salt and a broad range of nucleophiles.
Collapse
Affiliation(s)
- Xigong Liu
- School of Biological Science and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| | - Xue Yan
- School of Biological Science and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| | - Yingde Tang
- School of Biological Science and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| | - Cheng-Shi Jiang
- School of Biological Science and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| | - Jin-Hai Yu
- School of Biological Science and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| | - Kaiming Wang
- School of Biological Science and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| | - Hua Zhang
- School of Biological Science and Technology
- University of Jinan
- Jinan 250022
- P. R. China
| |
Collapse
|
19
|
Liu JL, Zhu ZF, Liu F. Cyanofluorination of vinyl ethers enabled by electron donor–acceptor complexes. Org Chem Front 2019. [DOI: 10.1039/c8qo01143e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The reaction is operationally simple and conducted under ambient conditions, allowing the access to highly functionalized α-alkoxy-β-fluoronitriles bearing quaternary carbons that are difficult to access by existing methods.
Collapse
Affiliation(s)
- Jia-Li Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry
- College of Pharmaceutical Sciences
- Soochow University
- Suzhou
- People's Republic of China
| | - Ze-Fan Zhu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry
- College of Pharmaceutical Sciences
- Soochow University
- Suzhou
- People's Republic of China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry
- College of Pharmaceutical Sciences
- Soochow University
- Suzhou
- People's Republic of China
| |
Collapse
|