1
|
Lu L, Huang Z, Luo H, Yang G, Huang Z, Long C, Majeed I, Zeng Z. Toward High Contrast and Noninvasive Fluorescence Switches via an O-Fused Ring 5,7-Dihydroxy-4-methyl-2,2,3-triphenylbenzofuran-6(2 H)-one Strategy. J Org Chem 2024; 89:9830-9840. [PMID: 38970810 DOI: 10.1021/acs.joc.4c00479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
An unprecedented O-fused ring 5,7-dihydroxy-4-methyl-2,2,3-triphenylbenzofuran-6(2H)-one (3) was first time synthesized. Further, a series of novel dialkyl/fluoroalkyl derivatives of compound 3, 5,7-dialkoxy/fluoroalkoxy-4-methyl-2,2,3-triphenylbenzofuran-6(2H)-one, were obtained with noninvasive fluorescence switching characteristics and aggregation-induced emission properties. Compared with fluoroalkyl derivatives, the alkyl analogs exhibited a significant bathochromic shift in solid-state fluorescence emission. Notably, these noninvasive fluorescent molecular switches could be facilely tuned through light and heat stimulation, which successfully achieved high contrast and reversible fluorescent emission between orange and yellow endowing them with potential applications in data encryption materials. In addition, the single crystal data of compounds 3 and 7-CF3 displayed weak intermolecular interactions in different directions, resulting in twisted conformation and antiparallel slip stacking. Interestingly, the polymer dimethyl silicone film doped with 7-C3F7 also showed an evident light-responsive behavior, meeting the criterion for fluorescent materials in the optical field.
Collapse
Affiliation(s)
- Liping Lu
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Zhaohao Huang
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Huaxin Luo
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Guangzao Yang
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Zheng Huang
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Chunmei Long
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Irfan Majeed
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Zhuo Zeng
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
2
|
Xue SS, Li Y, Pan W, Li N, Tang B. Multi-stimuli-responsive molecular fluorescent probes for bioapplications. Chem Commun (Camb) 2023; 59:3040-3049. [PMID: 36786045 DOI: 10.1039/d2cc07008a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Stimuli-responsive fluorescent probes have been widely utilized in detecting the physiological and pathological states of living systems. Numerous stimuli-responsive fluorescent probes have been developed due to their advantages of good sensitivity, high resolution, and high contrast fluorescent signals. In this feature article, the progress of multi-stimuli-responsive probes, including organic molecules and metal complexes, for the detection of various biomarkers for bio-applications is summarized. The feature article focuses on the applications of organic-molecule- and metal-complex-based molecular probes in biological systems for detecting different biomarkers of cancer or other diseases. The current challenges and potential future directions of these probes for applications in biological systems are also discussed.
Collapse
Affiliation(s)
- Shan-Shan Xue
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Yuanyuan Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| |
Collapse
|
3
|
Gascó C, Rodríguez-Santiago L, Sodupe M, Sebastián RM, Guirado G. Electroinduced crosslinking of triphenylamine-based polybenzoxazines. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
AIEE-TICT quadrupolar push-pull quinoxaline derivatives displaying solvatochromism, acidofluorochromism and logic gate operation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Shabashini A, Ramar V, Karthikeyan B, Panda MK, Nandi GC. Design and Synthesis of Triphenylamine Based Cyano Stilbenes for Picric Acid Sensing and Two Photon Absorption Applications. ChemistrySelect 2021. [DOI: 10.1002/slct.202103085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Arivalagan Shabashini
- Department Of Chemistry National Institute of Technology-Tiruchirapalli Tiruchirappalli 620015 Tamilnadu India
| | - Venkadeshkumar Ramar
- Nanophotonics Laboratory Department of Physics National Institute of Technology-Tiruchirapalli Tiruchirapalli 620015 Tamilnadu India
| | - Balasubramanian Karthikeyan
- Nanophotonics Laboratory Department of Physics National Institute of Technology-Tiruchirapalli Tiruchirapalli 620015 Tamilnadu India
| | - Manas K Panda
- Department of Chemistry Jadavpur University Kolkata 700032 >West Bengal India
| | - Ganesh Chandra Nandi
- Department Of Chemistry National Institute of Technology-Tiruchirapalli Tiruchirappalli 620015 Tamilnadu India
| |
Collapse
|
6
|
Santiago S, Giménez-Gómez P, Muñoz-Berbel X, Hernando J, Guirado G. Solid Multiresponsive Materials Based on Nitrospiropyran-Doped Ionogels. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26461-26471. [PMID: 34053217 PMCID: PMC8483435 DOI: 10.1021/acsami.1c04159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The application of molecular switches for the fabrication of multistimuli-responsive chromic materials and devices still remains a challenge because of the restrictions imposed by the supporting solid matrices where these compounds must be incorporated: they often critically affect the chromic response as well as limit the type and nature of external stimuli that can be applied. In this work, we propose the use of ionogels to overcome these constraints, as they provide a soft, fluidic, transparent, thermally stable, and ionic-conductive environment where molecular switches preserve their solution-like properties and can be exposed to a number of different stimuli. By exploiting this strategy, we herein pioneer the preparation of nitrospiropyran-based materials using a single solid platform that exhibit optimal photo-, halo-, thermo-, and electrochromic switching behaviors.
Collapse
Affiliation(s)
- Sara Santiago
- Departament
de Química, Universitat Autònoma
de Barcelona, Bellaterra, Barcelona 08193, Spain
- Instituto
de Microelectrónica de Barcelona (IMB-CNM, CSIC), Bellaterra, Barcelona 08193, Spain
| | - Pablo Giménez-Gómez
- Instituto
de Microelectrónica de Barcelona (IMB-CNM, CSIC), Bellaterra, Barcelona 08193, Spain
| | - Xavier Muñoz-Berbel
- Instituto
de Microelectrónica de Barcelona (IMB-CNM, CSIC), Bellaterra, Barcelona 08193, Spain
| | - Jordi Hernando
- Departament
de Química, Universitat Autònoma
de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Gonzalo Guirado
- Departament
de Química, Universitat Autònoma
de Barcelona, Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
7
|
Santiago S, Muñoz-Berbel X, Guirado G. Study of P(VDF-co-HFP)-ionic liquid based ionogels for designing flexible displays. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Zhang WJ, Lin XC, Li F, Huang ZJ, Gong CB, Tang Q. Multicolored electrochromic and electrofluorochromic materials containing triphenylamine and benzoates. NEW J CHEM 2020. [DOI: 10.1039/d0nj03666h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multicolored electrochromic and electrofluorochromic materials containing triphenylamine and benzoates were developed.
Collapse
Affiliation(s)
- Wei-jing Zhang
- The Key Laboratory of Applied Chemistry of Chongqing Municipality
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
| | - Xin-cen Lin
- The Key Laboratory of Applied Chemistry of Chongqing Municipality
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
| | - Feng Li
- The Key Laboratory of Applied Chemistry of Chongqing Municipality
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
| | - Zhen-jie Huang
- The Key Laboratory of Applied Chemistry of Chongqing Municipality
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
| | - Cheng-bin Gong
- The Key Laboratory of Applied Chemistry of Chongqing Municipality
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
| | - Qian Tang
- The Key Laboratory of Applied Chemistry of Chongqing Municipality
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing
- College of Chemistry and Chemical Engineering
- Southwest University
- Chongqing
| |
Collapse
|
9
|
Vázquez-Mera NA, Otaegui JR, Sánchez RS, Prats G, Guirado G, Ruiz-Molina D, Roscini C, Hernando J. Color-Tunable White-Light-Emitting Materials Based on Liquid-Filled Capsules and Thermally Responsive Dyes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17751-17758. [PMID: 30964641 DOI: 10.1021/acsami.9b02169] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Color-tunable white-light-emitting materials are currently attracting much attention because of their potential applications in artificial lighting, sensing, and imaging. However, preparation of these systems from organic emitters is often cumbersome due to the interchromophoric interactions occurring upon solvent drying in the final solid materials, which can be hardly predicted and may lead to detrimental effects. To circumvent these obstacles, we have developed a new fabrication methodology that relies on dye encapsulation within liquid-filled capsules, thus enabling direct transfer of the luminescent properties from solution to the solid state and as such, rational design of miniaturized white-light-emitting materials. By introducing a thermally responsive chromophore into the capsules, these materials are further endowed with color tunability, which does not only allow ample modulation of the emitted color but also facilitate external fine control of the system so as to ensure precise realization of white light at the desired temperature and excitation wavelength.
Collapse
Affiliation(s)
- Nuria Alexandra Vázquez-Mera
- Departament de Química , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Spain
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST) , Campus UAB, Bellaterra 08193 Barcelona , Spain
| | - Jaume R Otaegui
- Departament de Química , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Spain
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST) , Campus UAB, Bellaterra 08193 Barcelona , Spain
| | - Rafael S Sánchez
- Departament de Química , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Spain
| | - Gemma Prats
- Departament de Química , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Spain
| | - Gonzalo Guirado
- Departament de Química , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Spain
| | - Daniel Ruiz-Molina
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST) , Campus UAB, Bellaterra 08193 Barcelona , Spain
| | - Claudio Roscini
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology (BIST) , Campus UAB, Bellaterra 08193 Barcelona , Spain
| | - Jordi Hernando
- Departament de Química , Universitat Autònoma de Barcelona , 08193 Cerdanyola del Vallès , Spain
| |
Collapse
|
10
|
Heydari Z, Rashidi-Ranjbar P. Synthesis and photophysical properties of a new carbazole-based acidochromic molecular switch. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Bilayer Thin Films That Combine Luminescent and Spin Crossover Properties for an Efficient and Reversible Fluorescence Switching. MAGNETOCHEMISTRY 2019. [DOI: 10.3390/magnetochemistry5020028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We report on the vacuum thermal deposition of bilayer thin films of the luminescent complex Ir(ppy)3, tris[2-phenylpyridinato-C2,N]iridium(III), and the spin crossover complex [Fe(HB(tz)3)2], bis[hydrotris(1,2,4-triazol-1-yl)borate]iron(II). Switching the spin state of iron ions from the low spin to the high spin state around 337 K leads to a reversible jump of the luminescence intensity, while the spectrum shape and the luminescence lifetime remain unchanged. The luminescence modulation occurs due to the different UV light absorption properties of the iron complex in the two spin states and its magnitude can therefore be precisely adjusted by varying the film thickness. These multilayer luminescence switches hold potential for micro- and nanoscale thermal sensing and imaging applications.
Collapse
|