1
|
Chen Y, Cha TL, Jiang J, Li Y, Xie XY, Li D, Yan CX, Shao LD. Divergent Total Syntheses of Lycorine Alkaloids via a Sequential C-H Functionalization Strategy. J Org Chem 2024; 89:4851-4860. [PMID: 38546258 DOI: 10.1021/acs.joc.4c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
A Pd-catalyzed one-pot sequential C-H functionalization strategy was utilized to prepare four lycorine alkaloids and one pseudo-lycorine alkaloid from the common intermediate 4. By switching the followed oxidative conditions of air, DMSO/H2O/I2, and DMSO/O2, based on the Pd(PPh3)4/K2CO3/toluene catalytic system, three key intermediates 12a, 12b, and 12c with different substitution patterns could be obtained in a well-controlled manner. As a result, four natural products γ-lycorane, hippadine, anhydrolycorinone, and anhydrolycorine as well as a pseudo-lycorine alkaloid Δ(4a,10b)-6-oxodihydrolycorine were successfully synthesized within 10 steps through this divergent route.
Collapse
Affiliation(s)
- Yang Chen
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Tong-Ling Cha
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Jing Jiang
- Yunnan Precious Metals Laboratory, Kunming Institute of Precious Metals, Kunming 650106, China
| | - Yong Li
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Xiao-Yan Xie
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Dashan Li
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Cai-Xian Yan
- Yunnan Precious Metals Laboratory, Kunming Institute of Precious Metals, Kunming 650106, China
| | - Li-Dong Shao
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, China
| |
Collapse
|
2
|
Chakraborty N, Rajbongshi KK, Gondaliya A, Patel BK. PIDA/I 2-mediated photo-induced aerobic N-acylation of sulfoximines with methylarenes. Org Biomol Chem 2024; 22:2375-2379. [PMID: 38436055 DOI: 10.1039/d4ob00175c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
A visible-light-promoted, PIDA/I2-mediated acylation of NH-sulfoximines with methylarenes as an acyl source has been achieved. This transition metal and photosensitizer-free approach provides easy access to N-acylsulfoximines via oxidative coupling of sulfoximines with easily available methylarenes without using any peroxide source. Mechanistic investigations suggest the intermediacy of radicals and the importance of molecular oxygen.
Collapse
Affiliation(s)
- Nikita Chakraborty
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Kamal K Rajbongshi
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
- Department of Chemistry, Cotton University, Guwahati, 781001, Assam, India
| | - Amisha Gondaliya
- Department of Chemistry, Indrashil University, Kadi, Rajpur, 382740, Gujarat, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| |
Collapse
|
3
|
Huo T, Zhao X, Cheng Z, Wei J, Zhu M, Dou X, Jiao N. Late-stage modification of bioactive compounds: Improving druggability through efficient molecular editing. Acta Pharm Sin B 2024; 14:1030-1076. [PMID: 38487004 PMCID: PMC10935128 DOI: 10.1016/j.apsb.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Accepted: 11/13/2023] [Indexed: 03/17/2024] Open
Abstract
Synthetic chemistry plays an indispensable role in drug discovery, contributing to hit compounds identification, lead compounds optimization, candidate drugs preparation, and so on. As Nobel Prize laureate James Black emphasized, "the most fruitful basis for the discovery of a new drug is to start with an old drug"1. Late-stage modification or functionalization of drugs, natural products and bioactive compounds have garnered significant interest due to its ability to introduce diverse elements into bioactive compounds promptly. Such modifications alter the chemical space and physiochemical properties of these compounds, ultimately influencing their potency and druggability. To enrich a toolbox of chemical modification methods for drug discovery, this review focuses on the incorporation of halogen, oxygen, and nitrogen-the ubiquitous elements in pharmacophore components of the marketed drugs-through late-stage modification in recent two decades, and discusses the state and challenges faced in these fields. We also emphasize that increasing cooperation between chemists and pharmacists may be conducive to the rapid discovery of new activities of the functionalized molecules. Ultimately, we hope this review would serve as a valuable resource, facilitating the application of late-stage modification in the construction of novel molecules and inspiring innovative concepts for designing and building new drugs.
Collapse
Affiliation(s)
- Tongyu Huo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinyi Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
| | - Minghui Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiaodong Dou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, China
| |
Collapse
|
4
|
Xie Z, Liu Y, Luo Q, Wang Q, Min YB, Liu L, Zheng DK. New Lycopodium alkaloids with neuroprotective activities from Lycopodium japonicum Thunb. Nat Prod Res 2023:1-7. [PMID: 38058102 DOI: 10.1080/14786419.2023.2288242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/19/2023] [Indexed: 12/08/2023]
Abstract
One new lycopodine-type alkaloid (1), one new natural product (2), and eight known analogs (3-10) were isolated from the whole plants of Lycopodium japonicum Thunb. The structures of 1-10 were determined based on extensive comprehensive spectroscopic analyses, including UV, IR, NMR, and HRESIMS. Moreover, the isolated alkaloids were evaluated for their neuroprotective activity against Hemin-induced HT22 cell damage. Notably, compounds 1 and 10 exhibited potential neuroprotective activities, with 21.45% and 20.55% increase in cell survival at 20 μM, respectively. Moreover, compounds 1 and 10 revealed protective effects on Hemin-induced apoptosis in HT22 cells.
Collapse
Affiliation(s)
- Zhen Xie
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Yang Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Qiang Luo
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
- Rehabilitation College, Gannan Medical University, Ganzhou, China
| | - Qiang Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Yue-Bing Min
- National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Ganzhou, China
| | - Lin Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Dong-Kun Zheng
- National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical University, Ganzhou, China
- School of Pharmacy, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Lei Y, Li B, Liao X, Xing X, Feng P, Zhao B, Xu S. Isolation and total synthesis of dysidone A: a new piperidone alkaloid from the marine sponge Dysidea sp. RSC Adv 2023; 13:29316-29319. [PMID: 37809021 PMCID: PMC10557106 DOI: 10.1039/d3ra06115a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023] Open
Abstract
A new piperidone alkaloid, dysidone A (1), was isolated from the marine sponge Dysidea sp. The structure of 1 was elucidated by the method of spectroscopic analysis. Compound 1 represented the first example of piperidone alkaloid isolated from the sponge of the genus Dysidea with the exocyclic double bond. Furthermore, the total synthesis of 1 was also carried out, which was started with piperidine proceeding a PIDA/I2-mediated α and β-C (sp3) -H bond dual oxygenation to achieve a 5-steps synthesis in a total yield of 10.6%. In addition, the anti-inflammatory activities of 1 and its derivative dysidone B (1d) were evaluated, which suggested that 1 showed weak anti-inflammatory activity.
Collapse
Affiliation(s)
- Yu Lei
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University Guangzhou 510632 P. R. China
| | - Boao Li
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University Guangzhou 510632 P. R. China
| | - Xiaojian Liao
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University Guangzhou 510632 P. R. China
| | - Xiwen Xing
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University Guangzhou 510632 P. R. China
| | - Pengju Feng
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University Guangzhou 510632 P. R. China
| | - Bingxin Zhao
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University Guangzhou 510632 P. R. China
| | - Shihai Xu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University Guangzhou 510632 P. R. China
| |
Collapse
|
6
|
Allouche EMD, Simonet‐Davin R, Waser J. N-Terminal Selective C-H Azidation of Proline-Containing Peptides: a Platform for Late-Stage Diversification. Chemistry 2022; 28:e202200368. [PMID: 35137991 PMCID: PMC9306896 DOI: 10.1002/chem.202200368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Indexed: 11/08/2022]
Abstract
A methodology for the C-H azidation of N-terminal proline-containing peptides was developed employing only commercially available reagents. Peptides bearing a broad range of functionalities and containing up to 6 amino acids were selectively azidated at the carbamate-protected N-terminal residue in presence of the numerous other functional groups present on the molecules. Post-functionalizations of the obtained aminal compounds were achieved: cycloaddition reactions or C-C bond formations via a sequence of imine formation/nucleophilic addition were performed, offering an easy access to diversified peptides.
Collapse
Affiliation(s)
- Emmanuelle M. D. Allouche
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de LausanneEPFL, SB ISIC LCSO, BCH 43061015LausanneSwitzerland
| | - Raphaël Simonet‐Davin
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de LausanneEPFL, SB ISIC LCSO, BCH 43061015LausanneSwitzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic SynthesisEcole Polytechnique Fédérale de LausanneEPFL, SB ISIC LCSO, BCH 43061015LausanneSwitzerland
| |
Collapse
|
7
|
Ju ZY, Song LN, Chong MB, Cheng DG, Hou Y, Zhang XM, Zhang QH, Ren LH. Selective Aerobic Oxidation of C sp3-H Bonds Catalyzed by Yeast-Derived Nitrogen, Phosphorus, and Oxygen Codoped Carbon Materials. J Org Chem 2022; 87:3978-3988. [PMID: 35254832 DOI: 10.1021/acs.joc.1c02641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nitrogen, phosphorus, and oxygen codoped carbon catalysts were successfully synthesized using dried yeast powder as a pyrolysis precursor. The yeast-derived heteroatom-doped carbon (yeast@C) catalysts exhibited outstanding performance in the oxidation of Csp3-H bonds to ketones and esters, giving excellent product yields (of up to 98% yield) without organic solvents at low O2 pressure (0.1 MPa). The catalytic oxidation protocol exhibited a broad range of substrates (38 examples) with good functional group tolerance, excellent regioselectivity, and synthetic utility. The yeast-derived heteroatom-doped carbon catalysts showed good reusability and stability after recycling six times without any significant loss of activity. Experimental results and DFT calculations proved the important role of N-oxide (N+-O-) on the surface of yeast@C and a reasonable carbon radical mechanism.
Collapse
Affiliation(s)
- Zhao-Yang Ju
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Li-Na Song
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Ming-Ben Chong
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China.,Institute of Zhejiang University-Quzhou, 78 Jiuhuabei Road, Quzhou 324000, P. R. China
| | - Dang-Guo Cheng
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Xi-Ming Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Qing-Hua Zhang
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Lan-Hui Ren
- College of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China.,Institute of Zhejiang University-Quzhou, 78 Jiuhuabei Road, Quzhou 324000, P. R. China
| |
Collapse
|
8
|
Kuram MR, Yadav S, Chaudhary D, Maurya NK, Kumar D, Km I. Transfer hydrogenation of pyridinium and quinolinium species using ethanol as a hydrogen source to access saturated N-heterocycles. Chem Commun (Camb) 2022; 58:4255-4258. [DOI: 10.1039/d2cc00241h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic transfer hydrogenation (TH) for the reduction of heterocycles is an emerging strategy for accessing biologically active saturated N-heterocycles. Herein, we report a TH protocol that utilizes ethanol as a...
Collapse
|
9
|
Xiao ZH, Dong J, Li A, Dai JM, Li YP, Hu QF, Shao LD, Matsuda Y, Wang WG. Biocatalytic and chemical derivatization of fungal meroditerpenoid chevalone E. Org Chem Front 2022. [DOI: 10.1039/d2qo00055e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fungal meroditerpenoids include diverse molecules with structural complexity and a broad range of biological activities. We have previously obtained meroditerpenoid chevalone E (1) and its oxidized analogues by heterologously expressing...
Collapse
|
10
|
deng ZT, Wu XD, Yuan Z, Yu NR, Ou YF, Zhao QS. Total Synthesis of Huperserratines A and B. Org Chem Front 2022. [DOI: 10.1039/d2qo00608a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Huperserratines A (1) and B (2), two novel macrocyclic Lycopodium alkaloids, possess an aza-12-membered ring. Here, we describe the first total synthesis of these two natural products in 12 steps....
Collapse
|
11
|
Lian P, Li R, Wang L, Wan X, Xiang Z, Wan X. Photoredox aerobic oxidation of unreactive amine derivatives through LMCT excitation of copper dichloride. Org Chem Front 2022. [DOI: 10.1039/d2qo01032a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Taking advantage of the chlorine radical as a HAT catalyst, a versatile oxidation system for unreactive amines has been well established.
Collapse
Affiliation(s)
- Pengcheng Lian
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Ruyi Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Lili Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiao Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zixin Xiang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xiaobing Wan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
12
|
Deb ML, Saikia BS, Borpatra PJ, Baruah PK. Progress of metal‐free visible‐light‐driven a‐C‐H functionalization of tertiary amines: A decade journey. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | - Pranjal K. Baruah
- GUIST, Gauhati University Applied Sciences Gopinath Bordoloi Nagar 781014 Guwahati INDIA
| |
Collapse
|
13
|
Qu P, Snyder SA. Concise and Stereoselective Total Syntheses of Annotinolides C, D, and E. J Am Chem Soc 2021; 143:11951-11956. [PMID: 34338524 PMCID: PMC8397315 DOI: 10.1021/jacs.1c05942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
The annotinolides are one of the
most recent additions to the Lycopodium family of
alkaloids, with its members possessing
challenging, caged structures that include a [3.2.1]-bicyclic core
bearing six contiguous stereocenters, including four that are fully
substituted. Herein, we document a concise and stereoselective route
that achieves the first total syntheses of three of its members: annotinolides
C, D, and E. Key operations include a gold(I)-catalyzed Conia-ene
reaction that fashions much of the main core in a single operation,
as well as a number of other challenging and chemoselective transformations
to generate the remaining elements. Moreover, efforts utilizing the
natural products themselves, seeking adjustments in their oxidation
states and the rearrangement of individual ring systems, shed light
on their potential biogenesis with some outcomes counter to those
originally proposed. Finally, formal enantioenriched syntheses of
the target molecules are also presented.
Collapse
Affiliation(s)
- Pei Qu
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Scott A Snyder
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
14
|
Wang M, Wang W, Li D, Wang WJ, Zhan R, Shao LD. α-C(sp 3)-H Arylation of Cyclic Carbonyl Compounds. NATURAL PRODUCTS AND BIOPROSPECTING 2021; 11:379-404. [PMID: 34097248 PMCID: PMC8275813 DOI: 10.1007/s13659-021-00312-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/24/2021] [Indexed: 05/05/2023]
Abstract
α-C(sp3)-H arylation is an important type of C-H functionalization. Various biologically significant natural products, chemical intermediates, and drugs have been effectively prepared via C-H functionalization. Cyclic carbonyl compounds comprise of cyclic ketones, enones, lactones, and lactams. The α-C(sp3)-H arylation of these compounds have been exhibited high efficiency in forming C(sp3)-C(sp2) bonds, played a crucial role in organic synthesis, and attracted majority of interests from organic and medicinal communities. This review focused on the most significant advances including methods, mechanism, and applications in total synthesis of natural products in the field of α-C(sp3)-H arylations of cyclic carbonyl compounds in recent years.
Collapse
Affiliation(s)
- Mei Wang
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650050, China
| | - Wei Wang
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650050, China
| | - Dashan Li
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650050, China
| | - Wen-Jing Wang
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650050, China
| | - Rui Zhan
- School of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650050, China.
| | - Li-Dong Shao
- Yunnan Key Laboratory of Southern Medicinal Utilization, School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, 650050, China.
| |
Collapse
|
15
|
Khan I, Ibrar A, Zaib S. Alkynoates as Versatile and Powerful Chemical Tools for the Rapid Assembly of Diverse Heterocycles under Transition-Metal Catalysis: Recent Developments and Challenges. Top Curr Chem (Cham) 2021; 379:3. [PMID: 33398642 DOI: 10.1007/s41061-020-00316-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022]
Abstract
Heterocycles, heteroaromatics and spirocyclic entities are ubiquitous components of a wide plethora of synthetic drugs, biologically active natural products, marketed pharmaceuticals and agrochemical targets. Recognizing their high proportion in drugs and rich pharmacological potential, these invaluable structural motifs have garnered significant interest, thus enabling the development of efficient catalytic methodologies providing access to architecturally complex and diverse molecules with high atom-economy and low cost. These chemical processes not only allow the formation of diverse heterocycles but also utilize a range of flexible and easily accessible building units in a single operation to discover diversity-oriented synthetic approaches. Alkynoates are significantly important, diverse and powerful building blocks in organic chemistry due to their unique and inherent properties such as the electronic bias on carbon-carbon triple bonds posed by electron-withdrawing groups or the metallic coordination site provided by carbonyl groups. The present review highlights the comprehensive picture of the utility of alkynoates (2007-2019) for the synthesis of various heterocycles (> 50 types) using transition-metal catalysts (Ru, Rh, Pd, Ir, Ag, Au, Pt, Cu, Mn, Fe) in various forms. The valuable function of versatile alkynoates (bearing multifunctional groups) as simple and useful starting materials is explored, thus cyclizing with an array of coupling partners to deliver a broad range of oxygen-, nitrogen-, sulfur-containing heterocycles alongside fused-, and spiro-heterocyclic compounds. In addition, these examples will also focus the scope and reaction limitations, as well as mechanistic investigations into the synthesis of these heterocycles. The biological significance will also be discussed, citing relevant examples of drug molecules highlighting each class of heterocycles. This review summarizes the recent developments in the synthetic methods for the synthesis of various heterocycles using alkynoates as readily available starting materials under transition-metal catalysis.
Collapse
Affiliation(s)
- Imtiaz Khan
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | - Aliya Ibrar
- Department of Chemistry, Faculty of Natural Sciences, The University of Haripur, Haripur, KPK-22620, Pakistan
| | - Sumera Zaib
- Department of Biochemistry, Faculty of Life Sciences, University of Central Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
16
|
Deb ML, Saikia BS, Borpatra PJ, Baruah PK. α-C–H functionalization of tertiary amines catalyzed/promoted by molecular iodine/derivatives. NEW J CHEM 2021. [DOI: 10.1039/d1nj02695j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A recent review on the α-C–H functionalization of tertiary amines using low-cost and benign I2 or its derivatives.
Collapse
Affiliation(s)
- Mohit L. Deb
- Department of Applied Sciences
- GUIST
- Gauhati University
- Guwahati 781014
- India
| | - B. Shriya Saikia
- Department of Applied Sciences
- GUIST
- Gauhati University
- Guwahati 781014
- India
| | - Paran J. Borpatra
- Department of Applied Sciences
- GUIST
- Gauhati University
- Guwahati 781014
- India
| | - Pranjal K. Baruah
- Department of Applied Sciences
- GUIST
- Gauhati University
- Guwahati 781014
- India
| |
Collapse
|
17
|
Abe T, Hirao S, Kitamori M, Itoh T, Chiba Y. A Mild Bischler–Napieralski-Type Cyclization of Trichloromethyl Carbamates for the Synthesis of β-Carbolinones. HETEROCYCLES 2020. [DOI: 10.3987/com-19-s(f)19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
18
|
Wang F, Zhang X, He Y, Fan X. A novel synthesis of 3-hydroxypiperidin-2-ones via site-selective difunctionalization of piperidine derivatives. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
Romero‐Ibañez J, Cruz‐Gregorio S, Sandoval‐Lira J, Hernández‐Pérez JM, Quintero L, Sartillo‐Piscil F. Transition‐Metal‐Free Deconstructive Lactamization of Piperidines. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Julio Romero‐Ibañez
- Centro de Investigación de la Facultad de Ciencias QuímicasBenemérita Universidad Autónoma de Puebla (BUAP) 14 Sur Esq. San Claudio, Col. San Manuel 72570 Puebla México
| | - Silvano Cruz‐Gregorio
- Centro de Investigación de la Facultad de Ciencias QuímicasBenemérita Universidad Autónoma de Puebla (BUAP) 14 Sur Esq. San Claudio, Col. San Manuel 72570 Puebla México
| | - Jacinto Sandoval‐Lira
- Centro de Investigación de la Facultad de Ciencias QuímicasBenemérita Universidad Autónoma de Puebla (BUAP) 14 Sur Esq. San Claudio, Col. San Manuel 72570 Puebla México
| | - Julio M. Hernández‐Pérez
- Centro de Investigación de la Facultad de Ciencias QuímicasBenemérita Universidad Autónoma de Puebla (BUAP) 14 Sur Esq. San Claudio, Col. San Manuel 72570 Puebla México
| | - Leticia Quintero
- Centro de Investigación de la Facultad de Ciencias QuímicasBenemérita Universidad Autónoma de Puebla (BUAP) 14 Sur Esq. San Claudio, Col. San Manuel 72570 Puebla México
| | - Fernando Sartillo‐Piscil
- Centro de Investigación de la Facultad de Ciencias QuímicasBenemérita Universidad Autónoma de Puebla (BUAP) 14 Sur Esq. San Claudio, Col. San Manuel 72570 Puebla México
| |
Collapse
|
20
|
Romero-Ibañez J, Cruz-Gregorio S, Sandoval-Lira J, Hernández-Pérez JM, Quintero L, Sartillo-Piscil F. Transition-Metal-Free Deconstructive Lactamization of Piperidines. Angew Chem Int Ed Engl 2019; 58:8867-8871. [PMID: 30998837 DOI: 10.1002/anie.201903880] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Indexed: 12/19/2022]
Abstract
One of the major challenges in organic synthesis is the activation or deconstructive functionalization of unreactive C(sp3 )-C(sp3 ) bonds, which requires using transition or precious metal catalysts. We present here an alternative: the deconstructive lactamization of piperidines without using transition metal catalysts. To this end, we use 3-alkoxyamino-2-piperidones, which were prepared from piperidines through a dual C(sp3 )-H oxidation, as transitory intermediates. Experimental and theoretical studies confirm that this unprecedented lactamization occurs in a tandem manner involving an oxidative deamination of 3-alkoxyamino-2-piperidones to 3-keto-2-piperidones, followed by a regioselective Baeyer-Villiger oxidation to give N-carboxyanhydride intermediates, which finally undergo a spontaneous and concerted decarboxylative intramolecular translactamization.
Collapse
Affiliation(s)
- Julio Romero-Ibañez
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel, 72570, Puebla, México
| | - Silvano Cruz-Gregorio
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel, 72570, Puebla, México
| | - Jacinto Sandoval-Lira
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel, 72570, Puebla, México
| | - Julio M Hernández-Pérez
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel, 72570, Puebla, México
| | - Leticia Quintero
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel, 72570, Puebla, México
| | - Fernando Sartillo-Piscil
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel, 72570, Puebla, México
| |
Collapse
|
21
|
Mudithanapelli C, Dhorma LP, Kim MH. PIFA-Promoted, Solvent-Controlled Selective Functionalization of C(sp2)–H or C(sp3)–H: Nitration via C–N Bond Cleavage of CH3NO2, Cyanation, or Oxygenation in Water. Org Lett 2019; 21:3098-3102. [DOI: 10.1021/acs.orglett.9b00751] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Chandrashekar Mudithanapelli
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Lama Prema Dhorma
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Mi-hyun Kim
- Gachon Institute of Pharmaceutical Science & Department of Pharmacy, College of Pharmacy, Gachon University, 191 Hambakmoeiro, Yeonsu-gu, Incheon 21936, Republic of Korea
| |
Collapse
|
22
|
Chamorro-Arenas D, Osorio-Nieto U, Quintero L, Hernández-García L, Sartillo-Piscil F. Selective, Catalytic, and Dual C(sp3)–H Oxidation of Piperazines and Morpholines under Transition-Metal-Free Conditions. J Org Chem 2018; 83:15333-15346. [DOI: 10.1021/acs.joc.8b02564] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Delfino Chamorro-Arenas
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel, Puebla, Puebla 72570, México
| | - Urbano Osorio-Nieto
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel, Puebla, Puebla 72570, México
| | - Leticia Quintero
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel, Puebla, Puebla 72570, México
| | - Luís Hernández-García
- Centro de Investigación e Innovación Tecnológica, Instituto Tecnológico de Nuevo León, Av. De la Alianza No. 507, PIIT. Carretera Monterrey-Aeropuerto Km.10, Apodaca, Nuevo León 66628, México
| | - Fernando Sartillo-Piscil
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel, Puebla, Puebla 72570, México
| |
Collapse
|