1
|
Diemer V, Roy E, Agouridas V, Melnyk O. Protein desulfurization and deselenization. Chem Soc Rev 2024; 53:8521-8545. [PMID: 39010733 DOI: 10.1039/d4cs00135d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Methods enabling the dechalcogenation of thiols or selenols have been investigated and developed for a long time in fields of research as diverse as the study of prebiotic chemistry, the engineering of fuel processing techniques, the study of biomolecule structures and function or the chemical synthesis of biomolecules. The dechalcogenation of thiol or selenol amino acids is nowadays a particularly flourishing area of research for being a pillar of modern chemical protein synthesis, when used in combination with thiol or selenol-based chemoselective peptide ligation chemistries. This review offers a comprehensive and scholarly overview of the field, emphasizing emerging trends and providing a detailed and critical mechanistic discussion of the dechalcogenation methods developed so far. Taking advantage of recently published reports, it also clarifies some unexpected desulfurization reactions that were observed in the past and for which no explanation was provided at the time. Additionally, the review includes a discussion on principal desulfurization methods within the framework of newly introduced green chemistry metrics and toolkits, providing a well-rounded exploration of the subject.
Collapse
Affiliation(s)
- Vincent Diemer
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017, Center for Infection and Immunity of Lille, F-59000 Lille, France.
| | - Eliott Roy
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017, Center for Infection and Immunity of Lille, F-59000 Lille, France.
| | - Vangelis Agouridas
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017, Center for Infection and Immunity of Lille, F-59000 Lille, France.
- Centrale Lille, F-59000 Lille, France
| | - Oleg Melnyk
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017, Center for Infection and Immunity of Lille, F-59000 Lille, France.
| |
Collapse
|
2
|
Snella B, Grain B, Vicogne J, Capet F, Wiltschi B, Melnyk O, Agouridas V. Fast Protein Modification in the Nanomolar Concentration Range Using an Oxalyl Amide as Latent Thioester. Angew Chem Int Ed Engl 2022; 61:e202204992. [PMID: 35557487 DOI: 10.1002/anie.202204992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 11/08/2022]
Abstract
We show that latent oxalyl thioester surrogates are a powerful means to modify peptides and proteins in highly dilute conditions in purified aqueous media or in mixtures as complex as cell lysates. Designed to be shelf-stable reagents, they can be activated on demand to enable ligation reactions with peptide concentrations as low as a few hundred nM at rates approaching 30 M-1 s-1 .
Collapse
Affiliation(s)
- Benoît Snella
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Benjamin Grain
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Jérôme Vicogne
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Frédéric Capet
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, 59000, Lille, France
| | - Birgit Wiltschi
- Institute of Bioprocess Science and Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Oleg Melnyk
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Vangelis Agouridas
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France.,Centrale Lille, 59000, Lille, France
| |
Collapse
|
3
|
Bilbrough T, Piemontese E, Seitz O. Dissecting the role of protein phosphorylation: a chemical biology toolbox. Chem Soc Rev 2022; 51:5691-5730. [PMID: 35726784 DOI: 10.1039/d1cs00991e] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein phosphorylation is a crucial regulator of protein and cellular function, yet, despite identifying an enormous number of phosphorylation sites, the role of most is still unclear. Each phosphoform, the particular combination of phosphorylations, of a protein has distinct and diverse biological consequences. Aberrant phosphorylation is implicated in the development of many diseases. To investigate their function, access to defined protein phosphoforms is essential. Materials obtained from cells often are complex mixtures. Recombinant methods can provide access to defined phosphoforms if site-specifically acting kinases are known, but the methods fail to provide homogenous material when several amino acid side chains compete for phosphorylation. Chemical and chemoenzymatic synthesis has provided an invaluable toolbox to enable access to previously unreachable phosphoforms of proteins. In this review, we selected important tools that enable access to homogeneously phosphorylated protein and discuss examples that demonstrate how they can be applied. Firstly, we discuss the synthesis of phosphopeptides and proteins through chemical and enzymatic means and their advantages and limitations. Secondly, we showcase illustrative examples that applied these tools to answer biological questions pertaining to proteins involved in signal transduction, control of transcription, neurodegenerative diseases and aggregation, apoptosis and autophagy, and transmembrane proteins. We discuss the opportunities and challenges in the field.
Collapse
Affiliation(s)
- Tim Bilbrough
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Emanuele Piemontese
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| |
Collapse
|
4
|
Snella B, Grain B, Vicogne J, Capet F, Wiltschi B, Melnyk O, Agouridas V. Fast Protein Modification in the Nanomolar Concentration Range Using an Oxalyl Amide as Latent Thioester. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Benjamin Grain
- University of Lille: Universite de Lille Chemistry FRANCE
| | - Jérôme Vicogne
- Centre National de la Recherche Scientifique Biology FRANCE
| | | | | | - Oleg Melnyk
- CNRS: Centre National de la Recherche Scientifique UMR 9017 FRANCE
| | - Vangelis Agouridas
- Ecole Centrale de Lille ENSCL Av. Mendeleiev 59652 Villeneuve d'Ascq FRANCE
| |
Collapse
|
5
|
Diemer V, Firstova O, Agouridas V, Melnyk O. Pedal to the Metal: The Homogeneous Catalysis of the Native Chemical Ligation Reaction. Chemistry 2022; 28:e202104229. [PMID: 35048443 DOI: 10.1002/chem.202104229] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 11/08/2022]
Abstract
The native chemical ligation reaction of peptide thioesters with cysteinyl peptides is a pivotal chemical process in the production of native or modified peptides and proteins, and well beyond in the preparation of various biomolecule analogs and materials. To benefit from this reaction at its fullest and to access all the possible applications, the experimentalist needs to know the factors affecting its rate and how to control it. This concept article presents the fundamental principles underlying the rate of the native chemical ligation and its homogeneous catalysis by nucleophiles. It has been prepared to serve as a quick guide in the search for an appropriate catalyst.
Collapse
Affiliation(s)
- Vincent Diemer
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 -, UMR 9017 -, CIIL -, Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Olga Firstova
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 -, UMR 9017 -, CIIL -, Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Vangelis Agouridas
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 -, UMR 9017 -, CIIL -, Center for Infection and Immunity of Lille, 59000, Lille, France.,Centrale Lille, 59000, Lille, France
| | - Oleg Melnyk
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 -, UMR 9017 -, CIIL -, Center for Infection and Immunity of Lille, 59000, Lille, France
| |
Collapse
|
6
|
Hernandez JJ, Dobson AL, Carberry BJ, Kuenstler AS, Shah PK, Anseth KS, White TJ, Bowman CN. Controlled Degradation of Cast and 3-D Printed Photocurable Thioester Networks via Thiol–Thioester Exchange. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02459] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Juan J. Hernandez
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Adam L. Dobson
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Benjamin J. Carberry
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- The Bio Frontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Alexa S. Kuenstler
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Parag K. Shah
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- The Bio Frontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Timothy J. White
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Christopher N. Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
7
|
Affiliation(s)
- Damiano Tanini
- University of Florence Department of Chemistry ‘‘Ugo Schiff'' Via della Lastruccia 3–13 I-50019 Sesto Fiorentino Italy
| | - Antonella Capperucci
- University of Florence Department of Chemistry ‘‘Ugo Schiff'' Via della Lastruccia 3–13 I-50019 Sesto Fiorentino Italy
| |
Collapse
|
8
|
Kerdraon F, Bogard G, Snella B, Drobecq H, Pichavant M, Agouridas V, Melnyk O. Insights into the Mechanism and Catalysis of Peptide Thioester Synthesis by Alkylselenols Provide a New Tool for Chemical Protein Synthesis. Molecules 2021; 26:1386. [PMID: 33806630 PMCID: PMC7961367 DOI: 10.3390/molecules26051386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 11/17/2022] Open
Abstract
While thiol-based catalysts are widely employed for chemical protein synthesis relying on peptide thioester chemistry, this is less true for selenol-based catalysts whose development is in its infancy. In this study, we compared different selenols derived from the selenocysteamine scaffold for their capacity to promote thiol-thioester exchanges in water at mildly acidic pH and the production of peptide thioesters from bis(2-sulfanylethyl)amido (SEA) peptides. The usefulness of a selected selenol compound is illustrated by the total synthesis of a biologically active human chemotactic protein, which plays an important role in innate and adaptive immunity.
Collapse
Affiliation(s)
- Florent Kerdraon
- U1019-UMR 9017—CIIL—Center for Infection and Immunity of Lille, Institut Pasteur de Lille, University of Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (F.K.); (G.B.); (B.S.); (H.D.); (M.P.)
| | - Gemma Bogard
- U1019-UMR 9017—CIIL—Center for Infection and Immunity of Lille, Institut Pasteur de Lille, University of Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (F.K.); (G.B.); (B.S.); (H.D.); (M.P.)
| | - Benoît Snella
- U1019-UMR 9017—CIIL—Center for Infection and Immunity of Lille, Institut Pasteur de Lille, University of Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (F.K.); (G.B.); (B.S.); (H.D.); (M.P.)
| | - Hervé Drobecq
- U1019-UMR 9017—CIIL—Center for Infection and Immunity of Lille, Institut Pasteur de Lille, University of Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (F.K.); (G.B.); (B.S.); (H.D.); (M.P.)
| | - Muriel Pichavant
- U1019-UMR 9017—CIIL—Center for Infection and Immunity of Lille, Institut Pasteur de Lille, University of Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (F.K.); (G.B.); (B.S.); (H.D.); (M.P.)
| | - Vangelis Agouridas
- U1019-UMR 9017—CIIL—Center for Infection and Immunity of Lille, Institut Pasteur de Lille, University of Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (F.K.); (G.B.); (B.S.); (H.D.); (M.P.)
- Centrale Lille, F-59000 Lille, France
| | - Oleg Melnyk
- U1019-UMR 9017—CIIL—Center for Infection and Immunity of Lille, Institut Pasteur de Lille, University of Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (F.K.); (G.B.); (B.S.); (H.D.); (M.P.)
| |
Collapse
|
9
|
Strategies and open questions in solid-phase protein chemical synthesis. Curr Opin Chem Biol 2020; 58:1-9. [DOI: 10.1016/j.cbpa.2020.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/13/2020] [Accepted: 02/19/2020] [Indexed: 12/21/2022]
|
10
|
Diemer V, Ollivier N, Leclercq B, Drobecq H, Vicogne J, Agouridas V, Melnyk O. A cysteine selenosulfide redox switch for protein chemical synthesis. Nat Commun 2020; 11:2558. [PMID: 32444769 PMCID: PMC7244499 DOI: 10.1038/s41467-020-16359-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/23/2020] [Indexed: 01/08/2023] Open
Abstract
The control of cysteine reactivity is of paramount importance for the synthesis of proteins using the native chemical ligation (NCL) reaction. We report that this goal can be achieved in a traceless manner during ligation by appending a simple N-selenoethyl group to cysteine. While in synthetic organic chemistry the cleavage of carbon-nitrogen bonds is notoriously difficult, we describe that N-selenoethyl cysteine (SetCys) loses its selenoethyl arm in water under mild conditions upon reduction of its selenosulfide bond. Detailed mechanistic investigations show that the cleavage of the selenoethyl arm proceeds through an anionic mechanism with assistance of the cysteine thiol group. The implementation of the SetCys unit in a process enabling the modular and straightforward assembly of linear or backbone cyclized polypeptides is illustrated by the synthesis of biologically active cyclic hepatocyte growth factor variants.
Collapse
Affiliation(s)
- Vincent Diemer
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Nathalie Ollivier
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Bérénice Leclercq
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Hervé Drobecq
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Jérôme Vicogne
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France
| | - Vangelis Agouridas
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France.
| | - Oleg Melnyk
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, 59000, Lille, France.
| |
Collapse
|
11
|
Zhu D, Zheng W, Chang H, Xie H. A theoretical study on the p Ka values of selenium compounds in aqueous solution. NEW J CHEM 2020. [DOI: 10.1039/d0nj01124j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The pKa values of different kinds of selenium compounds (R-SeH) were investigated by using the ωB97XD method with a SMD model.
Collapse
Affiliation(s)
- Danfeng Zhu
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Wenrui Zheng
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Huifang Chang
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| | - Hongyun Xie
- College of Chemistry and Chemical Engineering
- Shanghai University of Engineering Science
- Shanghai 201620
- China
| |
Collapse
|
12
|
|
13
|
Du Y, Xu Y, Qi C, Wang C. Mechanistic study on the Knorr pyrazole synthesis-thioester generation reaction. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.06.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Yoshiya T, Tsuda S, Masuda S. Development of Trityl Group Anchored Solubilizing Tags for Peptide and Protein Synthesis. Chembiochem 2019; 20:1906-1913. [DOI: 10.1002/cbic.201900105] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Taku Yoshiya
- Peptide Institute, Inc. 7-2-9 Saito-Asagi Ibaraki-Shi Osaka 567-0085 Japan
| | - Shugo Tsuda
- Peptide Institute, Inc. 7-2-9 Saito-Asagi Ibaraki-Shi Osaka 567-0085 Japan
| | - Shun Masuda
- Peptide Institute, Inc. 7-2-9 Saito-Asagi Ibaraki-Shi Osaka 567-0085 Japan
| |
Collapse
|
15
|
Agouridas V, El Mahdi O, Diemer V, Cargoët M, Monbaliu JCM, Melnyk O. Native Chemical Ligation and Extended Methods: Mechanisms, Catalysis, Scope, and Limitations. Chem Rev 2019; 119:7328-7443. [DOI: 10.1021/acs.chemrev.8b00712] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Vangelis Agouridas
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Ouafâa El Mahdi
- Faculté Polydisciplinaire de Taza, University Sidi Mohamed Ben Abdellah, BP 1223 Taza Gare, Morocco
| | - Vincent Diemer
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Marine Cargoët
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| | - Jean-Christophe M. Monbaliu
- Center for Integrated Technology and Organic Synthesis, Department of Chemistry, University of Liège, Building B6a, Room 3/16a, Sart-Tilman, B-4000 Liège, Belgium
| | - Oleg Melnyk
- UMR CNRS 8204, Centre d’Immunité et d’Infection de Lille, University of Lille, CNRS, Institut Pasteur de Lille, F-59000 Lille, France
| |
Collapse
|