1
|
Liu WJ, Hu ZC, Wu YX, Deng SH, Ren ZL, Dong ZB. Selective Construction of C-S/S-N Bonds from N-Substituted O-Thiocarbamates and Indoles under Transition-Metal-Free Conditions. J Org Chem 2024; 89:4098-4112. [PMID: 38421813 DOI: 10.1021/acs.joc.3c02940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
A method for the selective construction of S-N/C(sp2)-S bonds using N-substituted O-thiocarbamates and indoles as substrates is reported. This protocol features good atom utilization, mild conditions, short reaction time, and wide substrate scope, which can provide a convenient path for the functionalization of indoles. In addition, the reaction could be scaled up on gram scale, showing potential application value in industry synthesis.
Collapse
Affiliation(s)
- Wen-Jie Liu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhi-Chao Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yu-Xi Wu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Shi-Hao Deng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhi-Lin Ren
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- College of Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
2
|
Gong Z, Yang C, Lin W, Wang D, Ma J, Dong Z. Michael Addition Reaction of Benzothiazol‐2‐thiol/Benoxazol‐2‐thiol with
α, β
‐Unsaturated Esters: Chemoselective Construction of C−S and C−N Bonds. ChemistrySelect 2023. [DOI: 10.1002/slct.202300552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Zhi‐Ying Gong
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 China
| | - Cheng‐Li Yang
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 China
| | - Wan‐Li Lin
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 China
| | - Dan Wang
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 China
| | - Jie Ma
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 China
| | - Zhi‐Bing Dong
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
- Key Laboratory of Green Chemical Process Ministry of Education, Wuhan Institute of Technology Wuhan 430205 China
| |
Collapse
|
3
|
Liu S, Jiang L. Copper-Catalyzed Multicomponent Reactions of Intramolecular and Intermolecular Thiotrifluoromethylation of Alkenes: Access to CF 3-Containing 2-Iminothiazolidines and Isothioureas. Org Lett 2022; 24:7157-7162. [PMID: 36166662 DOI: 10.1021/acs.orglett.2c02854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A copper-catalyzed multicomponent reaction of secondary amines bearing allyl substitution, isothiocyanates, and Togni reagent II has been developed under Cs2CO3 in DCE at 75 °C. An intermolecular multicomponent reaction of thioureas, activated and unactivated alkenes, and Togni reagent II has also been developed under DMAP in acetonitrile at room temperature. These two alkene difunctionalization reactions provide CF3-containing 2-iminothiazolindines and isothioureas in moderate to excellent yields with broad substrate scope and good functional group tolerance, respectively.
Collapse
Affiliation(s)
- Sainan Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Liqin Jiang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
4
|
Chen D, Bai Y, Cheng Q, Li J, Tong Z, Hou J, Liu T, Guo Y, Tang X, Yang X, Yang X. Domino synthetic strategy for tetrahydrothiophene derivatives from 2-acetylfuran/2-acetylthiophene, benzaldehydes, and sulfur powder. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
5
|
Yang B, Zhang XY, Yue HQ, Li WZ, Li M, Lu L, Wu ZQ, Li J, Sun K, Yang S. A Promoter‐free Protocol for the Synthesis of Selenophosphates and Thiophosphates via a Spontaneous Process at Room Temperature. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | - Kai Sun
- Anyang Normal University CHINA
| | | |
Collapse
|
6
|
Hussain F, Dar TA, Ahmed QN. Coupling of 1-Chloro- N, N-diisopropylphosphanamine-Based Reagents with Alcohols and Thiosulfonates: A Precise Construction of O-P(O)-S Bonds. Org Lett 2022; 24:5324-5328. [PMID: 35833826 DOI: 10.1021/acs.orglett.2c01947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we present the first mild, one-step direct synthesis of mixed phosphorothioates through selective generation of O-P(O)-S bonds at rt under additive-free condition. Further, reactions of different model natural products with 1,1-dichloro-N,N-diisopropylphosphanamine helped to present an alternative dimerization strategy. The synthetic utility of the methodology was extended for the synthesis of mixed phosphoroselenoates as well. The potential of the reaction was further demonstrated for the synthesis of mixed phosphorothioate bearing two different alcohols.
Collapse
Affiliation(s)
- Feroze Hussain
- Natural Products & Medicinal Chemistry Division, Indian Institute of Integrative Medicine (IIIM), 180001, Canal Road, Jammu, Jammu and Kashmir, India.,Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, 180001 Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), 201002 Ghaziabad, India
| | - Tariq Ahmad Dar
- Tariq Ahmad Dar, Natural Products & Medicinal Chemistry Division, Indian Institute of Integrative Medicine (IIIM), 180001, Canal Road, Jammu, Jammu & Kashmir, India.,Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, 180001 Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), 201002 Ghaziabad, India
| | - Qazi Naveed Ahmed
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, 180001 Jammu, India.,Academy of Scientific and Innovative Research (AcSIR), 201002 Ghaziabad, India
| |
Collapse
|
7
|
Hu ZC, Wu YX, Ye L, Cui JJ, Dong ZB. An Efficient and Practical Construction of S‐N Bond from Aryl Thioureas and Amines under Metal‐free Conditions. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhi-Chao Hu
- Wuhan Institute of Technology School of Chemistry and Environmental Engineering 430205 Wuhan CHINA
| | - Yue-Xiao Wu
- Wuhan Institute of Technology School of Chemistry and Environmental Engineering 430205 Wuhan CHINA
| | - Lei Ye
- Wuhan Institute of Technology School of Chemistry and Environmental Engineering 430205 Wuhan CHINA
| | - Jing-Jing Cui
- Wuhan Institute of Technology School of Chemistry and Environmental Engineering 430205 Wuhan CHINA
| | - Zhi-Bing Dong
- Wuhan Institute of Technology School of Chemistry and Environmental Engeering Liufang Campus, No. 206, Guanggu 1st Road 430205 Wuhan CHINA
| |
Collapse
|
8
|
Guo Y, Luo Y, Mu S, Xu J, Song Q. Photoinduced Decarboxylative Phosphorothiolation of N-Hydroxyphthalimide Esters. Org Lett 2021; 23:6729-6734. [PMID: 34410131 DOI: 10.1021/acs.orglett.1c02300] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A visible-light-induced protocol for the synthesis of phosphorothioates is developed by employing the Ir-catalyzed decarboxylative phosphorothiolation of N-hydroxyphthalimide esters. This novel synthesis method utilizes carboxylic acids as raw material, which is stable, cheap, and commercially available. Scope studies show that this reaction has good compatibility of functional groups. Notably, both the synthesis of steric hindrance phosphorothioates and the later modification of some bioactive compounds are successfully achieved.
Collapse
Affiliation(s)
- Yu Guo
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Ying Luo
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Shiqiang Mu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Jian Xu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
9
|
Wang D, Peng HY, Yang MM, Hao EJ, Li YS, Dong ZB. Cs 2CO 3-Promoted Hydrothiolation of Alkynes with Aryl Thioureas: Stereoselective Synthesis of ( Z)-Vinyl Sulfides. J Org Chem 2021; 86:8457-8464. [PMID: 34100610 DOI: 10.1021/acs.joc.1c00309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A metal-free Cs2CO3-promoted hydrothiolation of alkynes with aryl thioureas for stereoselective synthesis of (Z)-vinyl sulfides has been reported. Vinyl thioethers were obtained without a metal catalyst in good yields via anti-Markovnikov and cis addition. The protocol features a broad substrate scope of the starting materials, high atom economy, good yields, and exclusive stereoselectivity, showing potential synthetic value for the synthesis of a diversity of (Z)-vinyl thioethers.
Collapse
Affiliation(s)
- Dan Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Han-Ying Peng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Meng-Meng Yang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Er-Jun Hao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yue-Sheng Li
- Hubei key Laboratory of Novel Reactor and Green Chemistry Technology, Wuhan Institute of Technology, Wuhan 430205, China.,Non-power Nuclear Technology Collaborative Innovation Center, Hubei University of Science & Technology, Xianning 437100, China
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.,Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China.,Hubei key Laboratory of Novel Reactor and Green Chemistry Technology, Wuhan Institute of Technology, Wuhan 430205, China.,Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
10
|
Shen J, Li QW, Zhang XY, Wang X, Li GZ, Li WZ, Yang SD, Yang B. Tf2O/DMSO-Promoted P–O and P–S Bond Formation: A Scalable Synthesis of Multifarious Organophosphinates and Thiophosphates. Org Lett 2021; 23:1541-1547. [DOI: 10.1021/acs.orglett.0c04127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jian Shen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Qi-Wei Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Xin-Yue Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Xue Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Gui-Zhi Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Wen-Zuo Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Bin Yang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| |
Collapse
|
11
|
|
12
|
Ibrahim HM, Behbehani H. Palladium-Catalyzed Q-Tube-Assisted Protocol for Synthesizing Diaza-dibenzo[ a, e]azulene and Diaza-benzo[ a]fluorene Derivatives via O 2 Acid-Promoted Cross-Dehydrogenative Coupling. J Org Chem 2020; 85:15368-15381. [PMID: 33147024 DOI: 10.1021/acs.joc.0c02186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An appropriate and efficient Q-tube-assisted palladium-catalyzed strategy for the synthesis of novel, unparalleled diaza-dibenzo[a,e]azulene and diaza-benzo[a]fluorene derivatives has been sophisticated, which includes oxygen and AcOH-induced oxidative C(sp3)-C(sp2) cross-dehydrogenative coupling reactions of 1-amino-2-imino-4-arylpyridine-3-carbonitriles with benzocyclic ketones such as benzosuberone, tetralone, thiochromone, and chromone, respectively. This Q-tube gas purging kit assisted-protocol features safe due to easy pressing and sealing, a wide substrate scope, easy workup and purifying phases, and the use of O2 as a benign oxidant, in addition to being scalable and having a high atom economy. The suggested mechanistic pathway includes a formal dehydrative step followed by palladium AcOH-induced CH(sp3)-CH(sp2) oxidative cross-coupling. In this study, X-ray crystallographic analysis has been used to authenticate the targeted products.
Collapse
Affiliation(s)
- Hamada Mohamed Ibrahim
- Chemistry Department, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait.,Chemistry Department, Faculty of Science, Fayoum University, P.O. Box 63514, Fayoum 63514, Egypt
| | - Haider Behbehani
- Chemistry Department, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| |
Collapse
|
13
|
Chen D, Du W, Yang X, Liu T. Domino Synthetic Strategy for Tetrahydrothiopyran Derivatives from Benzaldehydes, 2-Acetylfuran/2-Acetylthiophene, and Sodium Sulfide. J Org Chem 2020; 85:9088-9095. [PMID: 32530280 DOI: 10.1021/acs.joc.0c01006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel domino reaction from benzaldehydes and 2-acetylfuran/2-acetylthiophene with sodium sulfide was developed to synthesize a series of tetrahydrothiopyran (THTP) derivatives. The reaction proceeded well to construct a tetrahydrothiopyran ring and five new bonds in one step. A mechanism is proposed, involving a stepwise Aldol/double Michael addition/Aldol (AMMA) reaction cascade. In this transformation, sodium sulfide acts as a nucleophile and base. This method is characterized by transition-metal-free, commercially available starting materials and mild reaction conditions.
Collapse
Affiliation(s)
- Dongdong Chen
- Department of Chemistry & Chemical Engineering, Lvliang University, Lishi 033001, P. R. China
| | - Weixia Du
- Department of Chemistry & Chemical Engineering, Lvliang University, Lishi 033001, P. R. China
| | - Xufeng Yang
- Department of Chemistry & Chemical Engineering, Lvliang University, Lishi 033001, P. R. China
| | - Tao Liu
- Department of Chemistry & Chemical Engineering, Lvliang University, Lishi 033001, P. R. China
| |
Collapse
|
14
|
Peng K, Dong Z. Recent Advances in Sulfur‐Centered S–X (X = N, P, O) Bond Formation Catalyzed by Transition Metals. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Kang Peng
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology 430205 Wuhan China
| | - Zhi‐Bing Dong
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology 430205 Wuhan China
- Key Laboratory of Green Chemical Process Ministry of Education Wuhan Institute of Technology 430205 Wuhan China
- Ministry‐of‐Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules Hubei University 430062 Wuhan China
- Hubei key Laboratory of Novel Reactor and Green Chemistry Technology Wuhan Institute of Technology 430205 Wuhan China
| |
Collapse
|
15
|
Peng K, Gao MY, Yi YY, Guo J, Dong ZB. Copper/Nickel-Catalyzed Selective C-S/S-S Bond Formation Starting from O
-Alkyl Phenylcarbamothioates. European J Org Chem 2020. [DOI: 10.1002/ejoc.201901884] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kang Peng
- School of Chemistry and Environmental Engineering; Wuhan Institute of Technology; 430205 Wuhan China
| | - Ming-Yuan Gao
- School of Chemistry and Environmental Engineering; Wuhan Institute of Technology; 430205 Wuhan China
| | - Yu-Yan Yi
- School of Chemistry and Environmental Engineering; Wuhan Institute of Technology; 430205 Wuhan China
| | - Jia Guo
- Key Laboratory of Green Chemical Process; Ministry of Education; Wuhan Institute of Technology; 430205 Wuhan China
- Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology; Ministry of Education; Wuhan Institute of Technology; 430205 Wuhan China
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering; Wuhan Institute of Technology; 430205 Wuhan China
- Key Laboratory of Green Chemical Process; Ministry of Education; Wuhan Institute of Technology; 430205 Wuhan China
- Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology; Ministry of Education; Wuhan Institute of Technology; 430205 Wuhan China
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules; Ministry of Education; Hubei University; 430062 Wuhan China
| |
Collapse
|
16
|
Chen JQ, Liu X, Guo J, Dong ZB. A Chemoselective and Desulfurative Chan-Lam Coupling: C-N Bond Formation between Benzimidazoline-2-Thiones and Arylboronic Acids. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Jin-Quan Chen
- School of Chemistry and Environmental Engineering; Wuhan Institute of Technology; 430205 Wuhan China
| | - Xing Liu
- School of Chemistry and Environmental Engineering; Wuhan Institute of Technology; 430205 Wuhan China
| | - Jia Guo
- Key Laboratory of Green Chemical Process; Ministry of Education; Wuhan Institute of Technology; 430205 Wuhan China
- Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology; Ministry of Education; Wuhan Institute of Technology; 430205 Wuhan China
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering; Wuhan Institute of Technology; 430205 Wuhan China
- Key Laboratory of Green Chemical Process; Ministry of Education; Wuhan Institute of Technology; 430205 Wuhan China
- Hubei Key Laboratory of Novel Reactor and Green Chemistry Technology; Ministry of Education; Wuhan Institute of Technology; 430205 Wuhan China
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules; Ministry of Education; Hubei University; 430062 Wuhan China
| |
Collapse
|
17
|
Gao MY, Li JH, Zhang SB, Chen LJ, Li YS, Dong ZB. A Mild Synthesis of 2-Substituted Benzothiazoles via Nickel-Catalyzed Intramolecular Oxidative C-H Functionalization. J Org Chem 2019; 85:493-500. [PMID: 31845809 DOI: 10.1021/acs.joc.9b02543] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A highly efficient synthetic method for the preparation of 2-aminobenzothiazoles starting from arylthioureas has been reported. By using a nickel catalyst, arylthioureas undergo intramolecular oxidative C-H bond functionalization, giving the desired 2-aminobenzothiazoles in good to excellent yields. This protocol features an inexpensive catalyst, low catalyst loading, mild reaction conditions, a short reaction time, and good to excellent yields, and it can be scaled up easily to a gram scale with almost no yields decreasing.
Collapse
Affiliation(s)
- Ming-Yuan Gao
- School of Chemistry and Environmental Engineering , Wuhan Institute of Technology , Wuhan 430205 , China
| | - Jing-Hang Li
- School of Chemistry and Environmental Engineering , Wuhan Institute of Technology , Wuhan 430205 , China
| | - Shi-Bo Zhang
- School of Chemistry and Environmental Engineering , Wuhan Institute of Technology , Wuhan 430205 , China
| | - Li-Jun Chen
- School of Chemistry and Environmental Engineering , Wuhan Institute of Technology , Wuhan 430205 , China
| | - Yue-Sheng Li
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology , Hubei University of Science and Technology , Xianning 437100 , China
| | - Zhi-Bing Dong
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology , Hubei University of Science and Technology , Xianning 437100 , China.,School of Chemistry and Environmental Engineering , Wuhan Institute of Technology , Wuhan 430205 , China
| |
Collapse
|
18
|
Behbehani H, Ibrahim HM. Synthetic Strategy for Pyrazolo[1,5- a]pyridine and Pyrido[1,2- b]indazole Derivatives through AcOH and O 2-Promoted Cross-dehydrogenative Coupling Reactions between 1,3-Dicarbonyl Compounds and N-Amino-2-iminopyridines. ACS OMEGA 2019; 4:15289-15303. [PMID: 31552376 PMCID: PMC6751734 DOI: 10.1021/acsomega.9b02430] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/21/2019] [Indexed: 05/12/2023]
Abstract
An efficient method has been developed for the synthesis of uniquely substituted pyrazolo[1,5-a]pyridine and pyrido[1,2-b]indazole derivatives, which involves acetic acid and molecular oxygen promoted cross-dehydrogenative coupling reactions of respective β-ketoesters and β-diketones (like ethyl acetoacetate, ethyl benzoylacetate, methyl propionylacetate, acetylacetone, dimedone, 1,3-cyclohexanedione, and 1,3-cyclopentanedione) with N-amino-2-iminopyridines. The proposed tentative mechanism involves formal acetic acid-promoted oxidative C(sp3)-C(sp2) dehydrogenative coupling followed by dehydrative cyclization under a catalyst-free condition within high atom economy processes.
Collapse
Affiliation(s)
- Haider Behbehani
- Chemistry
Department, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | - Hamada Mohamed Ibrahim
- Chemistry
Department, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
- Chemistry
Department, Faculty of Science, Fayoum University, P.O. Box 63514, Fayoum, Egypt
| |
Collapse
|
19
|
Liu X, Dong ZB. Chemoselective Chan–Lam Coupling Reactions between Benzimidazoline-2-thiones and Arylboronic Acids. J Org Chem 2019; 84:11524-11532. [DOI: 10.1021/acs.joc.9b01370] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xing Liu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhi-Bing Dong
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan 430062, China
| |
Collapse
|
20
|
Ibrahim HM, Behbehani H. Sustainable Synthetic Approach for (Pyrazol-4-ylidene)pyridines By Metal Catalyst-Free Aerobic C(sp 2)-C(sp 3) Coupling Reactions between 1-Amino-2-imino-pyridines and 1-Aryl-5-pyrazolones. ACS OMEGA 2019; 4:11701-11711. [PMID: 31460276 PMCID: PMC6682090 DOI: 10.1021/acsomega.9b01650] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 06/21/2019] [Indexed: 05/26/2023]
Abstract
A novel, metal catalyst-free, and efficient method has been developed for the synthesis of (pyrazol-4-ylidene)pyridine derivatives. The process involves dehydrogenative coupling of 1-amino-2-imino-pyridines with 1-aryl-5-pyrazolone derivatives utilizing O2 as the sole oxidant. The new method benefits from a high atom economy, efficiency, and substrate scope, as well as the simplicity of reaction and product purification procedures.
Collapse
Affiliation(s)
- Hamada Mohamed Ibrahim
- Chemistry
Department, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
- Chemistry
Department, Faculty of Science, Fayoum University, P.O. Box 63514, Fayoum, Egypt
| | - Haider Behbehani
- Chemistry
Department, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| |
Collapse
|