1
|
Gao JJ, Wu LH, Yu SQ, Zhu X, Zeng Y, Yang K, Wang ZY. Synthesis of Oxazoles Containing CF 3-Substituted Alcohol Unit via Tandem Cycloisomerization/Hydroxyalkylation from N-Propargylamides with Trifluoropyruvates. Molecules 2024; 29:5848. [PMID: 39769937 PMCID: PMC11728596 DOI: 10.3390/molecules29245848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Oxazoles are important five-membered heterocycles that contain both nitrogen and oxygen atoms. Due to their wide range of biological activities, many oxazoles demonstrate potential for extensive application in various fields, including medicinal chemistry. Trifluoromethyl carbinol, an important pharmacophore, contains both trifluoromethyl and hydroxyl groups and is common in molecules with important biological activities. Constructing oxazoles that contain a trifluoromethyl carbinol unit is undoubtedly important and valuable for expanding the chemical space in drug discovery. In this study, a simple and efficient method was developed for the synthesis of oxazoles containing a CF3-substituted alcohol unit via the tandem cycloisomerization/hydroxyalkylation of N-propargylamides with trifluoropyruvates through a rational Lewis acid catalytic mechanism. This Zn(OTf)2-catalyzed synthetic protocol is operationally simple and provides a series of oxazoles in moderate to good yields. The protocol demonstrates broad substrate scope, high functional group tolerance, and high atom economy and can achieve gram-level reactions, indicating the strong possibility of its practical application.
Collapse
Affiliation(s)
- Juan-Juan Gao
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (J.-J.G.); (L.-H.W.); (S.-Q.Y.); (X.Z.)
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China;
| | - Long-Hui Wu
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (J.-J.G.); (L.-H.W.); (S.-Q.Y.); (X.Z.)
| | - Shu-Qin Yu
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (J.-J.G.); (L.-H.W.); (S.-Q.Y.); (X.Z.)
| | - Xue Zhu
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (J.-J.G.); (L.-H.W.); (S.-Q.Y.); (X.Z.)
| | - Yu Zeng
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China;
| | - Kai Yang
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, College of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (J.-J.G.); (L.-H.W.); (S.-Q.Y.); (X.Z.)
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China;
| | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China;
| |
Collapse
|
2
|
Pal S, Nandi R, Manna AS, Aich S, Maiti DK. Cu I-Catalyzed Radical Reaction of Benzimidates to Form Valuable 4,5-Dihydrooxazoles through Regioselective Aerobic Oxidative Cross-Coupling. J Org Chem 2024; 89:2703-2717. [PMID: 38295826 DOI: 10.1021/acs.joc.3c02773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
A straightforward Cu(I)-catalyzed oxidative cross-coupled organic transformation has been developed under mild conditions for the construction of functionalized 4,5-dihydrooxazoles through a four-bond-forming regiocontrolled C-C/C-N/C-O coupling strategy emerging benzimidates, paraformaldehyde, and 1,3-diketo analogues using eco-friendly O2 as the sole oxidant. The fundamental features of these designed approaches involve operational simplicity, selectivity, generality, and a broad substrate scope with high yields under the same reaction conditions.
Collapse
Affiliation(s)
- Subhasis Pal
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Rajesh Nandi
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Anindya S Manna
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Shobhon Aich
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
3
|
Li M, He Z, Zhao W, Yu Y, Huang F, Baell JB. Photocatalytic Benzylic C-H Oxidation/Cyclization of Enaminones to the Synthesis of Polysubstituted Oxazoles. J Org Chem 2023. [PMID: 37262016 DOI: 10.1021/acs.joc.3c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Photocatalytic benzylic C-H oxidation/cyclization of enaminones was efficiently achieved to afford oxazole derivatives under mild conditions. The oxygen in the oxazole ring originated from green oxidant molecular oxygen. The synthetic protocol features broad substrate scopes and good functional group tolerance. The combined experimental and theoretical studies reveal that in suit benzylic C-H oxidation/cyclization is involved in the reaction transformations.
Collapse
Affiliation(s)
- Mingrui Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Zhiqin He
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Wei Zhao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yang Yu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Fei Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jonathan B Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
4
|
Zhu YP, Zhou Y, Li WJ, Liu FR, Wang WC, Hao KY, Chao BY, Shi TR, Wu AX, Sun YY. Iodine-Promoted Oxidative Cyclization of Methyl Azaarenes and α-Amino Ketones for One-Pot Synthesis of 2-Azaaryl-5-aryl Oxazoles. J Org Chem 2022; 87:12460-12469. [PMID: 36067376 DOI: 10.1021/acs.joc.2c01399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A high efficiency protocol was developed for the synthesis of 2,5-disubstituted oxazoles via iodine-promoted oxidative domino cyclization. These reactions were performed with readily available methyl azaarenes and α-amino ketones under metal-free conditions. This protocol is a simple method with high functional group compatibility, a wide range of substrates, and excellent yield, providing a new way to synthesize azaarene-attached oxazoles.
Collapse
Affiliation(s)
- Yan-Ping Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong Yantai, 264005, P. R. China
| | - Yu Zhou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong Yantai, 264005, P. R. China
| | - Wen-Juan Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong Yantai, 264005, P. R. China
| | - Fu-Rao Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong Yantai, 264005, P. R. China
| | - Wen-Cheng Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong Yantai, 264005, P. R. China
| | - Kai-Yan Hao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong Yantai, 264005, P. R. China
| | - Bing-Yu Chao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong Yantai, 264005, P. R. China
| | - Tian-Ru Shi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong Yantai, 264005, P. R. China
| | - An-Xin Wu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Hubei Wuhan, 430079, P. R. China
| | - Yuan-Yuan Sun
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Shandong Yantai, 264005, P. R. China
| |
Collapse
|
5
|
Lei J, Li SQ, Luo YF, Tang DY, Zhou CH, Li HY, Xu ZG, Chen ZZ. Zn(OTf) 2-Promoted Isocyanide-Based Three-Component Reaction: Direct Access to 2-Oxazolines and β-Amino Amides. J Org Chem 2022; 87:11888-11898. [PMID: 35976796 DOI: 10.1021/acs.joc.2c01437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient one-pot reaction of propargylamides, isocyanides, and water catalyzed by zinc was developed for the rapid construction of 2-oxazolines with a wide functional group tolerance. The methylene-3-oxazoline was proven to play a vitally important role to start the tandem cascade transformation through unfunctionalized alkynes with sequential nucleophilic addition approaches of isocyanide and water. Notably, with a slight alteration of the reaction temperature and the addition of one molecule of water, various β-amino amide derivatives were synthesized in good to excellent yields.
Collapse
Affiliation(s)
- Jie Lei
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Shi-Qiang Li
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Ya-Fei Luo
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Dian-Yong Tang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Zhi-Gang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| | - Zhong-Zhu Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Avenue, Yongchuan, Chongqing 402160, China
| |
Collapse
|
6
|
Abenante L, Quadros GT, Perin G, Santi C, Penteado F, Lenardao EJ. Visible Light Mediated Photocatalytic Synthesis of 2‐Substituted Oxazole‐5‐carbaldehydes Promoted by Benzeneseleninic Acid. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | - Claudio Santi
- University of Perugia: Universita degli Studi di Perugia Dept Pharmaceutical Sciences BRAZIL
| | | | | |
Collapse
|
7
|
Design, synthesis and biological evaluation of difluoroalkylated protoilludanes obtained by a practical radical cascade difluoroalkylation-cyclization reaction. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2021.153594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Chen N, Lei J, Wang Z, Liu Y, Sun K, Tang S. Construction of Fluoro-containing Heterocycles Mediated by Free Radicals. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202109033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Li Z, Wu YH, Xi JM, Wei ZL, Liao WW. Copper-Catalyzed Difluoroalkylation of Alkene/Nitrile Insertion/Cyclization Tandem Sequences: Construction of Difluorinated Bicyclic Amidines. Org Lett 2021; 23:9591-9596. [PMID: 34874172 DOI: 10.1021/acs.orglett.1c03802] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A copper-catalyzed difluoroalkylation of an alkene/nitrile insertion/cyclization tandem sequence of N-cyanamide alkene was described, which provided a convenient synthetic approach for accessing difluorinated bicyclic amidines bearing imine moieties in a sustainable fashion. This protocol is characterized by high yields, a broad substrate scope, and good functional group compatibility. In addition, the desired product can be readily converted into other valuable functionalized fluorinated aza-heterocycles.
Collapse
Affiliation(s)
- Zheng Li
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Yu-Heng Wu
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Ji-Ming Xi
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Zhong-Lin Wei
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Wei-Wei Liao
- Department of Organic Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
10
|
Liu Y, Zhu K, Kong Y, Li X, Cui J, Xia Y, Zhao J, Duan S, Li P. Merging Gold/Copper Catalysis and Copper/Photoredox Catalysis: An Approach to Alkyl Oxazoles from N-Propargylamides. J Org Chem 2021; 86:18247-18256. [PMID: 34866385 DOI: 10.1021/acs.joc.1c02668] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Here, we report a mild and highly efficient approach to alkyl oxazoles through merging gold/copper catalysis and copper/photoredox catalysis. Various alkyl oxazoles are synthesized from N-propargylamides with alkyl halides in good to excellent yields with wide functional-group compatibility under blue-light irradiation. Significantly, a copper catalyst plays a dual role in this transformation: as a powerful cocatalyst to accelerate protodeauration of vinyl gold intermediates and improve photoredox catalysis.
Collapse
Affiliation(s)
- Yantao Liu
- Institute of Functional Organic Molecular Engineering, Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Keyong Zhu
- Institute of Functional Organic Molecular Engineering, Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Yuting Kong
- Institute of Functional Organic Molecular Engineering, Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Xiao Li
- Institute of Functional Organic Molecular Engineering, Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Jie Cui
- School of Pharmacy, Henan University, Kaifeng 475004, P. R. China
| | - Yifan Xia
- School of Pharmacy, Henan University, Kaifeng 475004, P. R. China
| | - Jingjing Zhao
- Institute of Functional Organic Molecular Engineering, Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Shaofeng Duan
- School of Pharmacy, Henan University, Kaifeng 475004, P. R. China
| | - Pan Li
- Institute of Functional Organic Molecular Engineering, Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
11
|
Saranya PV, Aneeja T, Anilkumar G. Palladium‐catalyzed difluoromethylation and difluoroalkylation reactions: An overview. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Liu Y, Shi Y, Wei L, Zhao K, Zhao J, Zhang P, Xu X, Li P. Gold-Catalyzed One-Pot Synthesis of Polyfluoroalkylated Oxazoles from N-Propargylamides Under Visible-Light Irradiation. Chem Asian J 2021; 16:2417-2420. [PMID: 34235859 DOI: 10.1002/asia.202100614] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/29/2021] [Indexed: 11/11/2022]
Abstract
A gold-catalyzed synthesis of polyfluoroalkylated oxazoles from N-propargylamides under visible-light irradiation has been developed. These reactions display excellent compatibility of radicals and gold catalysts under visible-light irradiation. Mechanistic experiments indicate that polyfluoroalkyl iodides play a dual role in enhanced compatibility of radicals and gold catalysts through assisted protodeauration of vinyl gold and reactivated the gold catalyst. In addition, PPh3 AuNTf2 not only activates N-propargylamide to generate vinyl gold intermediate, but also greatly promotes homolysis of polyfluoroalkyl iodides under blue light irradiation.
Collapse
Affiliation(s)
- Yantao Liu
- Department Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Yating Shi
- Department Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Lanen Wei
- Department Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Ke Zhao
- Department Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Jingjing Zhao
- Department Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Puyu Zhang
- Department Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Xuejun Xu
- Department Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Pan Li
- Department Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
13
|
Mondal S, Ballav T, Biswas K, Ghosh S, Ganesh V. Exploiting the Versatility of Palladium Catalysis: A Modern Toolbox for Cascade Reactions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sourav Mondal
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| | - Tamal Ballav
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| | - Krishna Biswas
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| | - Suman Ghosh
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| | - Venkataraman Ganesh
- Department of Chemistry Indian Institute of Technology Kharagpur Kharagpur 721 302 West Bengal India
| |
Collapse
|
14
|
Zhao MN, Ning GW, Yang DS, Fan MJ, Zhang S, Gao P, Zhao LF. Iron-Catalyzed Cycloaddition of Amides and 2,3-Diaryl-2 H-azirines To Access Oxazoles via C-N Bond Cleavage. J Org Chem 2021; 86:2957-2964. [PMID: 33443426 DOI: 10.1021/acs.joc.0c02843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A novel and efficient iron-catalyzed cycloaddition reaction using readily available 2,3-diaryl-2H-azirines and primary amides is reported. A wide range of trisubstituted oxazoles could be achieved in good yields with good functional group compatibility. In this transformation, two C-N bonds were cleaed and new C-N and C-O bonds were formed.
Collapse
Affiliation(s)
- Mi-Na Zhao
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Gui-Wan Ning
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - De-Suo Yang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Ming-Jin Fan
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Sheng Zhang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Peng Gao
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Li-Fang Zhao
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| |
Collapse
|
15
|
Wang X, Lei J, Liu Y, Ye Y, Li J, Sun K. Fluorination and fluoroalkylation of alkenes/alkynes to construct fluoro-containing heterocycles. Org Chem Front 2021. [DOI: 10.1039/d0qo01629b] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review summarize the established strategies through fluorination and fluoroalkylation of alkenes/alkynes for constructing fluoro-containing heterocycles. Reaction scopes, mechanisms and some shortcomings are also discussed.
Collapse
Affiliation(s)
- Xin Wang
- School of Chemistry and Chemical Engineering
- YanTai University
- Yantai
- P. R. China
| | - Jia Lei
- School of Pharmacy
- Harbin University of Commerce
- Harbin
- P. R. China
| | - Yingjie Liu
- School of Pharmacy
- Harbin University of Commerce
- Harbin
- P. R. China
| | - Yong Ye
- College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Jiazhu Li
- School of Chemistry and Chemical Engineering
- YanTai University
- Yantai
- P. R. China
| | - Kai Sun
- School of Chemistry and Chemical Engineering
- YanTai University
- Yantai
- P. R. China
| |
Collapse
|
16
|
Zhao F, Guo S, Zhang Y, Sun T, Yang B, Ye Y, Sun K. Silver-catalyzed decarboxylative radical relay difluoroalkylation–carbocyclization: convenient access to CF 2-containing quinolinones. Org Chem Front 2021. [DOI: 10.1039/d1qo01425k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical Ag-catalyzed formal decarboxylation and radical difluoroalkylation–carbocyclization–hydrolysis route is established to construct a series of structurally diverse CF2-containing N-heterocycles.
Collapse
Affiliation(s)
- Feng Zhao
- School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, P. R. China
| | - Sa Guo
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong, P. R. China
| | - Yan Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong, P. R. China
| | - Ting Sun
- School of Chemistry and Materials Science, Guizhou Education University, Guiyang 550018, P. R. China
| | - Bing Yang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong, P. R. China
| | - Yong Ye
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Kai Sun
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, Shandong, P. R. China
| |
Collapse
|
17
|
Ma JW, Chen X, Zhou ZZ, Liang YM. Visible-Light-Induced Palladium-Catalyzed Carbocyclization of Unactivated Alkyl Bromides with Alkenes Involving C–I or C–B Coupling. J Org Chem 2020; 85:9301-9312. [DOI: 10.1021/acs.joc.0c00077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jun-Wei Ma
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xi Chen
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Zhao-Zhao Zhou
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| |
Collapse
|
18
|
Nan GM, Li X, Yao TY, Yan TX, Wen LR, Li M. InCl3-catalyzed 5-exo-dig cyclization/1,6-conjugate addition of N-propargylamides with p-QMs to construct oxazole derivatives. Org Biomol Chem 2020; 18:1780-1784. [DOI: 10.1039/c9ob02651g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An InCl3-catalyzed tandem intramolecular 5-exo-dig cyclization/1,6-conjugate addition/aromatization of N-propargylamides with p-QMs to produce oxazoles tethering diarylmethane has been successfully developed.
Collapse
Affiliation(s)
- Guang-Ming Nan
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang
- Yili Normal University
- Yining 835000
- China
| | - Xue Li
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang
- Yili Normal University
- Yining 835000
- China
| | - Tian-Yu Yao
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science & Technology
- Qingdao 266042
- China
| | - Ting-Xun Yan
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science & Technology
- Qingdao 266042
- China
| | - Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering
- College of Chemistry and Molecular Engineering
- Qingdao University of Science & Technology
- Qingdao 266042
- China
| | - Ming Li
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang
- Yili Normal University
- Yining 835000
- China
- State Key Laboratory Base of Eco-Chemical Engineering
| |
Collapse
|
19
|
Dong DQ, Yang H, Shi JL, Si WJ, Wang ZL, Xu XM. Promising reagents for difluoroalkylation. Org Chem Front 2020. [DOI: 10.1039/d0qo00567c] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review describes recent advances in difluoroalkylation reactions using different substrates.
Collapse
Affiliation(s)
- Dao-Qing Dong
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Huan Yang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Jun-Lian Shi
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Wen-Jia Si
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Zu-Li Wang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Xin-Ming Xu
- College of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| |
Collapse
|
20
|
Herszman JD, Berger M, Waldvogel SR. Fluorocyclization of N-Propargylamides to Oxazoles by Electrochemically Generated ArIF2. Org Lett 2019; 21:7893-7896. [DOI: 10.1021/acs.orglett.9b02884] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- John D. Herszman
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Michael Berger
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Siegfried R. Waldvogel
- Institute of Organic Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|