1
|
Fu W, Shao Z, Xu Z, Li Z, Shao X. O-nitrobenzyl Caged Molecule Enables Photo-controlled Release of Thiabendazole. Chembiochem 2024; 25:e202300742. [PMID: 38426686 DOI: 10.1002/cbic.202300742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/03/2024] [Indexed: 03/02/2024]
Abstract
Pesticides are essential in agricultural development. Controlled-release pesticides have attracted great attentions. Base on a principle of spatiotemporal selectivity, we extended the photoremovable protective group (PRPG) into agrochemical agents to achieve controllable release of active ingredients. Herein, we obtained NP-TBZ by covalently linking o-nitrobenzyl (NP) with thiabendazole (TBZ). Compound NP-TBZ can be controlled to release TBZ in dependent to light. The irradiated and unirradiated NP-TBZ showed significant differences on fungicidal activities both in vitro and in vivo. In addition, the irradiated NP-TBZ displayed similar antifungal activities to the directly-used TBZ, indicating a factual applicability in controllable release of TBZ. Furthermore, we explored the action mode and microcosmic variations by SEM analysis, and demonstrated that the irradiated NP-TBZ retained a same action mode with TBZ against mycelia growth.
Collapse
Affiliation(s)
- Wen Fu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhongli Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
2
|
Situ Z, Lu M, Chen W, Xie Z, Chen SL, Dang L, Li MD. Boosting the Release of Leaving Group from Blebbistatin Derivative Photocages via Enhancing Intramolecular Charge Transfer and Stabilizing Cationic Intermediate. J Phys Chem Lett 2023; 14:11580-11586. [PMID: 38100086 DOI: 10.1021/acs.jpclett.3c02970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Blebbistatin (Bleb) derivatives are a visible light photocage platform. During the photocleavage process, intramolecular charge transfer (ICT) and cationic intermediates play a decisive role. However, slow photolysis rate and low photolysis quantum yield are the main problems for Bleb's derivatives. Herein, by introducing a substituted OCH3 group at the para-position of the D ring, Bleb and Bleb derivatives with various leaving groups were synthesized and studied, and the photolysis performance was unveiled by steady-state spectra, photolysis rate experiments, photolysis quantum yield, and density functional theory calculations. Substituted OCH3 derivatives of Bleb may enhance the photolysis rate and increase the photolysis quantum yield because the electron-donating group can promote the ICT process and stabilize the cationic intermediate during the photolytic reaction. More generally, the insights gained from this structure-reactivity relationship may provide theoretical guidance and aid in the development of new highly efficient photoreactions.
Collapse
Affiliation(s)
- Zicong Situ
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Manlin Lu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Wenbin Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Zuoti Xie
- Department of Materials Science and Engineering, MATEC, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong 515063, China
| | - Shun Li Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| |
Collapse
|
3
|
Situ Z, Chen W, Yang S, Fan X, Liu F, Wong NK, Dang L, Phillips DL, Li MD. Blue or Near-Infrared Light-Triggered Release of Halogens via Blebbistatin Photocage. J Phys Chem B 2022; 126:3338-3346. [PMID: 35446590 DOI: 10.1021/acs.jpcb.2c01440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Photocages can provide spatial and temporal control to accurately release the various chemicals and bioactive groups when excited by light. Although the absorption spectra of most photocages are in the ultraviolet absorption region, only a few absorb in the visible or near-infrared region. Blebbistatin (Bleb) would release a hydroxyl radical under blue one-photon or two-photon near-infrared light (800 nm) irradiation. In this work, typical chlorine and bromine as leaving groups substituted hydroxyl compounds (Bleb-Cl, Bleb-Br) are synthesized to evaluate the photocage's capability of Bleb's platform. Driven by the excited-state charge transfer, Bleb-Cl and Bleb-Br show good photolysis quantum yield to uncage the halogen anion and the uncaging process would be accelerated in water solution. The photochemical reaction, final product's analysis, and femtosecond transient absorption studies on Bleb-Cl/Bleb-Br demonstrate that Bleb can act as a photocage platform to release the halogen ion via heterolytic reaction when irradiated by blue or near-infrared light. Therefore, Bleb can be a new generation of visible or near-infrared light-triggered photocage.
Collapse
Affiliation(s)
- Zicong Situ
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Wenbin Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Sirui Yang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Xiaolin Fan
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Fan Liu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Nai-Kei Wong
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Ming-De Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| |
Collapse
|
4
|
Guo Y, Dai M, Phillips DL, Xu W, Ma J. Photodeprotection Reaction Mechanisms of Caged Species Utilizing a Photochromism Function. J Phys Chem Lett 2022; 13:3417-3423. [PMID: 35404609 DOI: 10.1021/acs.jpclett.2c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Acetoxy-1,2,2-tri(aryl)ethanone (1) is a novel and visual release-and-report system that contains the photochromic diarylethylene function attached to the photocage dimethoxybenzoin platform. However, the mechanism of 1 cyclization and a subsequent deprotection remains unclear. Here, we use femtosecond and nanosecond transient absorption spectroscopies in combination with density functional theory computations to study the detailed reaction mechanism. The photodeprotection proceeds with competition between pathways initiated by two different configurations of the singlet excited state of 1 (labeled as 11LE and 11CT); the stepwise elimination after cyclization of 11LE constitutes the predominant pathway, whereas the concerted removal of acetic acid after cyclization of 11CT is the minor pathway. These results contribute to a detailed photodeprotection mechanism of 1 and provide new insights into the effect of geometric configurations of intermediates on the photodeprotection pathways. This new information can help in the further development of this type of the photolabile protecting group (PPG) for the protection of biorelevant molecules and in the design of an improved and versatile release-and-report PPG.
Collapse
Affiliation(s)
- Yan Guo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Mingdong Dai
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Wenhua Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jiani Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
5
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
6
|
Liao S, Liu J, Yan L, Liu Q, Chen G, Ma L. 2-Bromoanthraquinone as a highly efficient photocatalyst for the oxidation of sec-aromatic alcohols: experimental and DFT study. RSC Adv 2020; 10:37014-37022. [PMID: 35521235 PMCID: PMC9057153 DOI: 10.1039/d0ra06414a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/18/2020] [Indexed: 11/21/2022] Open
Abstract
Anthraquinones are recognized as high efficiency photocatalysts which can perform various redox reactions in aqueous or organic phases. We have experimentally proven that 2-BrAQ can undergo hydrogen transfer with an alpha-aromatic alcohol under light conditions, thereby efficiently oxidizing the aromatic alcohol to the corresponding product. The yield of 1-phenethanol to acetophenone can reach more than 96%. In subsequent catalyst screening experiments, it was found that the electronegativity of the substituent at the 2 position of the anthraquinone ring and the acidity of the solvent affect the photocatalytic activity of anthraquinones. After using various aromatic alcohol substrates, 2-BrAQ showed good conversion and selectivity for most aromatic alcohols, but showed C-C bond cleavage and low selectivity with non-α-position aromatic alcohols. In order to explore the mechanism of the redox reaction of 2-BrAQ in acetonitrile solution, the corresponding free radical reaction pathway was proposed and verified by density functional theory (DFT). Focusing on calculations for 2-BrAQ during the reaction and the first-step hydrogen transfer reaction between the 2-BrAQ triplet molecule and the 1-phenylethanol molecule, we recognized the changes that occurred during the reaction and thus have a deeper understanding of the redox reaction of anthraquinone compounds in organic systems.
Collapse
Affiliation(s)
- Shengfu Liao
- Biomass Catalytic Conversion Laboratory, Guangzhou Institute of Energy, Chinese Academy of Sciences Guangzhou Guangdong 510640 China +86-20-87057673 +86-20-87057673
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jianguo Liu
- Biomass Catalytic Conversion Laboratory, Guangzhou Institute of Energy, Chinese Academy of Sciences Guangzhou Guangdong 510640 China +86-20-87057673 +86-20-87057673
| | - Long Yan
- Biomass Catalytic Conversion Laboratory, Guangzhou Institute of Energy, Chinese Academy of Sciences Guangzhou Guangdong 510640 China +86-20-87057673 +86-20-87057673
| | - Qiying Liu
- Biomass Catalytic Conversion Laboratory, Guangzhou Institute of Energy, Chinese Academy of Sciences Guangzhou Guangdong 510640 China +86-20-87057673 +86-20-87057673
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Guanghui Chen
- Department of Chemistry, Shantou University Shantou 515063 Guangdong PR China
| | - Longlong Ma
- Biomass Catalytic Conversion Laboratory, Guangzhou Institute of Energy, Chinese Academy of Sciences Guangzhou Guangdong 510640 China +86-20-87057673 +86-20-87057673
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
7
|
Mohite AR, Phatake RS, Dubey P, Agbaria M, Shames AI, Lemcoff NG, Reany O. Thiourea-Mediated Halogenation of Alcohols. J Org Chem 2020; 85:12901-12911. [DOI: 10.1021/acs.joc.0c01431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Amar R. Mohite
- Department of Natural Sciences, The Open University of Israel, Ra’anana 4353701, Israel
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ravindra S. Phatake
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Pooja Dubey
- Department of Natural Sciences, The Open University of Israel, Ra’anana 4353701, Israel
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Mohamed Agbaria
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Alexander I. Shames
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - N. Gabriel Lemcoff
- Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Ofer Reany
- Department of Natural Sciences, The Open University of Israel, Ra’anana 4353701, Israel
| |
Collapse
|
8
|
Guo Y, Xu T, Ma J. Does the photoredox reaction affect the photorelease of anthraquinone protected benzaldehyde? A time-resolved spectroscopic study. Phys Chem Chem Phys 2020; 22:15900-15907. [DOI: 10.1039/d0cp02103b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Time-resolved spectroscopy studies coupled with the results from density functional theory (DFT) computations were utilized to unravel the photodeprotection reaction mechanism of Aqe-diol-PPG and the photoredox of photoproduct Aqe-diol.
Collapse
Affiliation(s)
- Yan Guo
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi’an
- P. R. China
| | - Tongyu Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi’an
- P. R. China
| | - Jiani Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi’an
- P. R. China
| |
Collapse
|
9
|
Guo Y, Song Q, Xu T, Ma J, Phillips DL. The solvent effect on the photodeprotection of anthraquinone protected carboxylic acid unravelled by time-resolved spectroscopic studies. Phys Chem Chem Phys 2019; 21:14598-14604. [DOI: 10.1039/c9cp01227c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Time-resolved spectroscopy studies coupled with the results from density functional theory (DFT) computations unraveled the photodeprotection reaction mechanism(s) of AQ protected p-methoxybenzoic acid and the solvent effect on the photodeprotection.
Collapse
Affiliation(s)
- Yan Guo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi’an
- P. R. China
| | - Qingqing Song
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi’an
- P. R. China
| | - Tongyu Xu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi’an
- P. R. China
| | - Jiani Ma
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi’an
- P. R. China
| | - David Lee Phillips
- Department of Chemistry
- The University of Hong Kong
- Hong Kong S.A.R
- P. R. China
| |
Collapse
|