1
|
Faure C, Benmaouche S, Belmont P, Brachet E, Lamaa D. N-H Insertion of Anilines on N-Tosylhydrazones Induced by Visible Light Irradiation. J Org Chem 2024; 89:11620-11630. [PMID: 39056462 DOI: 10.1021/acs.joc.4c01317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Diazo compounds and their precursors represent an interesting chemical category for organic synthesis. Particularly, N-tosylhydrazones have attracted attention for their easy accessibility and diverse reactivity, including carbene transfer reactions. We described a visible light-induced N-H insertion reaction of anilines on in situ-generated diazo compounds. Optimal conditions using DBU in toluene efficiently yielded the desired products. Mechanistic studies enabled us to trap a carbene intermediate that plays a key role in the transformation.
Collapse
Affiliation(s)
- Clara Faure
- Université Paris Cité, UMR 8038 CNRS, Faculté de Pharmacie, F-75006 Paris, France
| | - Salim Benmaouche
- Université Paris Cité, UMR 8038 CNRS, Faculté de Pharmacie, F-75006 Paris, France
| | - Philippe Belmont
- Université Paris Cité, UMR 8038 CNRS, Faculté de Pharmacie, F-75006 Paris, France
| | - Etienne Brachet
- Université Paris Cité, UMR 8038 CNRS, Faculté de Pharmacie, F-75006 Paris, France
| | - Diana Lamaa
- Université Paris Cité, UMR 8038 CNRS, Faculté de Pharmacie, F-75006 Paris, France
| |
Collapse
|
2
|
Tamizharasan N, Santhoshkumar P, Devarajan N, Hallur MS, Hallur G, Suresh P. Silver-Promoted Rapid Synthesis of 3-Arylindan-1-ones: Microwave-Assisted Reductive Coupling of N-Tosylhydrazone and Boronic Acids. J Org Chem 2024. [PMID: 38768212 DOI: 10.1021/acs.joc.3c02676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
An efficient and straightforward one-pot tandem synthesis of 3-arylindan-1-ones was consummated through silver nitrate-promoted C-C coupling of simple indane-1,3-dione with arylboronic acid via 1,3-indanedione monotosylhydrazone under microwave conditions. The resulting series of 3-arylindan-1-ones exhibited impressive yields, surpassing those achievable with traditional methods and requiring a shorter time frame. This innovative approach significantly accelerated the synthesis of biologically active compounds such as (+)-indatraline (Lu 19-005) and several other industrially relevant substances.
Collapse
Affiliation(s)
- Natarajan Tamizharasan
- Supramolecular and Catalysis Lab, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
- Medicinal Chemistry Department, Jubilant Biosys Ltd., Bangalore, Karnataka 560022, India
| | - Pandeeswaran Santhoshkumar
- Supramolecular and Catalysis Lab, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
| | - Nainamalai Devarajan
- Supramolecular and Catalysis Lab, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
| | - Mahanandeesha S Hallur
- Medicinal Chemistry Department, Jubilant Biosys Ltd., Bangalore, Karnataka 560022, India
| | - Gurulingappa Hallur
- Medicinal Chemistry Department, Jubilant Biosys Ltd., Bangalore, Karnataka 560022, India
| | - Palaniswamy Suresh
- Supramolecular and Catalysis Lab, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamil Nadu 625021, India
| |
Collapse
|
3
|
Uwabe Y, Muto K, Yamaguchi J. Concise Synthesis of (±)-Fortuneicyclidins and (±)-Cephalotine B Enabled by Pd-Catalyzed Dearomative Spirocyclization. Chemistry 2023; 29:e202302769. [PMID: 37703132 DOI: 10.1002/chem.202302769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
Total syntheses of C11-oxygenated Cephalotaxus alkaloids, fortuneicyclidins A and B, and cephalotine B, were achieved. The key for the synthesis is a Pd-catalyzed dearomative spirocyclization of bromofurans with N-tosylhydrazones, followed by acid-mediated tandem transformation to construct the tetracyclic skeleton with the C11-oxygen functional group. Chemo-selective and catalytic functional group conversions of the tetracyclic intermediate completed the synthesis of fortuneicyclidins and cephalotine B in 8 and 9 steps, respectively.
Collapse
Affiliation(s)
- Yota Uwabe
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo, 162-0041, Japan
| | - Kei Muto
- Waseda Institute for Advanced Study, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo, 162-0041, Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo, 162-0041, Japan
| |
Collapse
|
4
|
Yavari I, Shaabanzadeh S. Benzylic C(sp 3)-H Bonds Play the Dual Role of Starting Material and Oxidation Inhibitor for Hydrazides in the Electrochemical Synthesis of Hydrazones. J Org Chem 2022; 87:15077-15085. [PMID: 36347012 DOI: 10.1021/acs.joc.2c01574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The electrooxidation of benzylic C(sp3)-H bonds to produce hydrazones as an alternate for conventional pathways has an enormous dignity. Under the aegis of electricity, instead of hazardous metal catalysts and external oxidants, we unveil an electrochemical process for electrooxidation of various benzylic C(sp3)-H bonds in aqueous media in all pH ranges that subsequently produce hydrazones with further reactions. This electrooxidative reaction strategy provides an acceptable condition for synthesizing hydrazones with various functional groups in good efficiency and amenable to gram-scale synthesis. The electrochemical oxidation condition proves an excellent level of compatibility with super cheap electrolyte NaCl for the oxidation of benzylic C(sp3)-H position despite the highly oxidizable hydrazide group remaining intact in the reaction.
Collapse
Affiliation(s)
- Issa Yavari
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran 1463694571, Iran
| | - Sina Shaabanzadeh
- Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran 1463694571, Iran
| |
Collapse
|
5
|
Granados A, Dhungana RK, Sharique M, Majhi J, Molander GA. From Styrenes to Fluorinated Benzyl Bromides: A Photoinduced Difunctionalization via Atom Transfer Radical Addition. Org Lett 2022; 24:4750-4755. [PMID: 35766376 PMCID: PMC10412001 DOI: 10.1021/acs.orglett.2c01699] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An operationally simple and practical method is disclosed to achieve the difunctionalization of styrenes, generating fluorinated benzyl bromides via a photoinduced atom transfer radical addition process. The developed method is mild, atom-economical, cost-effective, employs very low photocatalyst loading (1000 ppm), and is highly compatible with a broad range of functional groups on styrene. The versatility of the fluorinated benzyl bromides is demonstrated through their derivatization to a variety of valuable compounds.
Collapse
Affiliation(s)
| | | | | | - Jadab Majhi
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Gary A. Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
6
|
Ge D, Sun LW, Yu ZL, Luo XL, Xu P, Shen ZL. Regioselective synthesis of 6-nitroindole derivatives from enaminones and nitroaromatic compounds via transition metal-free C-C and C-N bond formation. Org Biomol Chem 2022; 20:1493-1499. [PMID: 35107115 DOI: 10.1039/d1ob02443d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Few methods are known for the synthesis of nitroindole derivatives. A simple and practical Cs2CO3-promoted method for the synthesis of 6-nitroindole derivatives from enaminones and nitroaromatic compounds has been developed. Two new C-C and C-N bonds were formed in a highly regioselective manner under transition metal-free conditions.
Collapse
Affiliation(s)
- Danhua Ge
- Chemical Experiment Teaching Center, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Li-Wen Sun
- Chemical Experiment Teaching Center, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Zi-Lun Yu
- Chemical Experiment Teaching Center, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xin-Long Luo
- Chemical Experiment Teaching Center, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Pei Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Zhi-Liang Shen
- Chemical Experiment Teaching Center, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
7
|
Rossi R, Ciofalo M. Palladium-Catalysed Intermolecular Direct C–H Bond Arylation of Heteroarenes with Reagents Alternative to Aryl Halides: Current State of the Art. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220201124008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
Abstract: This unprecedented review with 322 references provides a critical up-to-date picture of the Pd-catalysed intermolecular direct C–H bond arylation of heteroarenes with arylating reagents alternative to aryl halides that include aryl sulfonates (aryl triflates, tosylates, mesylates, and imidazole-1-sulfonates), diaryliodonium salts, [(diacetoxy)iodo]arenes, arenediazonium salts, 1-aryltriazenes, arylhydrazines and N’-arylhydrazides, arenesulfonyl chlorides, sodium arenesulfinates, arenesulfinic acids, and arenesulfonohydrazides. Particular attention has been paid to summarise the preparation of the various arylating reagents and to highlight the practicality, versatility, and limitations of the various developed arylation protocols, also comparing their results with those achieved in analogous Pd-catalysed arylation reactions involving the use of aryl halides as electrophiles. Mechanistic proposals have also been briefly summarised and discussed. However, data concerning Pd-catalysed direct C–H bond arylations involving the C–H bonds of aryl substituents of the examined heteroarene derivatives have not been taken into account.
Collapse
Affiliation(s)
- Renzo Rossi
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi 3, I-56124 Pisa, Italy
| | - Maurizio Ciofalo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, Viale delle Scienze, Edificio 4, I-90128, Palermo, Italy
| |
Collapse
|
8
|
Lokolkar MS, Mane PA, Dey S, Bhanage BM. Synthesis of 2‐substituted indoles by Pd‐Catalyzed reductive cyclization of 1‐halo‐2‐nitrobenzene with alkynes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Manjunath S. Lokolkar
- Institute of Chemical Technology Department of Chemistry Chemistry 400019 Mumbai INDIA
| | - Pravin A. Mane
- Bhabha Atomic Research Centre Chemistry Division 400085 Mumbai INDIA
| | - Sandip Dey
- Bhabha Atomic Research Centre Chemistry Division 400085 Mumbai INDIA
| | - Bhalchandra M. Bhanage
- Institute of Chemical Technology Department of Chemistry Nathalal Parekh MargMatunga (East)MumbaiMaharashtra 400019 Mumbai INDIA
| |
Collapse
|
9
|
Zhang K, Provot O, Alami M, Tran C, Hamze A. Pd-Catalyzed Coupling of N-Tosylhydrazones with Benzylic Phosphates: Toward the Synthesis of Di- or Tri-Substituted Alkenes. J Org Chem 2022; 87:1249-1261. [PMID: 35015524 DOI: 10.1021/acs.joc.1c02580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study shows that various di- and tri-substituted alkenes with high chemoselectivity were obtained in good to high yields by coupling N-tosylhydrazones (NTHs) with benzylic phosphates as electrophilic partners. The obtained new catalytic system consisted of PdCl2(CH3CN)2/dppp, LiOtBu as a base, and cyclopentyl methyl ether as a green solvent. In addition, we performed a gram-scale transformation using NTH derivatives and benzylic phosphates having a C sp2-Cl bond. The latter was used as a starting point for further postfunctionalization of the key intermediates.
Collapse
Affiliation(s)
- Kena Zhang
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Olivier Provot
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Mouad Alami
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Christine Tran
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Abdallah Hamze
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| |
Collapse
|
10
|
Thomas GT, Ronda K, McIndoe JS. A mechanistic investigation of the Pd-catalyzed cross-coupling between N-tosylhydrazones and aryl halides. Dalton Trans 2021; 50:15533-15537. [PMID: 34647949 DOI: 10.1039/d1dt03161a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cross-coupling of N-tosylhydrazones and aryl halides forms carbon-carbon bonds, producing 1,1-disubstituted alkenes. Though it has proven extremely useful in several fields of chemistry, its mechanism remains experimentally unexplored. Combining benchtop NMR and real-time mass spectrometry afforded the ability to monitor the catalytic intermediates as well as the rate of product formation.
Collapse
|
11
|
A palladium-catalyzed Barluenga cross-coupling - reductive cyclization sequence to substituted indoles. Tetrahedron 2021; 94. [PMID: 34483377 DOI: 10.1016/j.tet.2021.132331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A short and flexible synthesis of substituted indoles employing two palladium-catalyzed reactions, a Barluenga cross-coupling of p-tosylhydrazones with 2-nitroarylhalides followed by a palladium-catalyzed, carbon monoxide-mediated reductive cyclization has been developed. A one-pot, two-step methodology was further developed, eliminating isolation and purification of the cross-coupling product. This was accomplished by utilizing the initially added 0.025 equivalents of bis(triphenylphosphine)palladium dichloride, thus serving a dual role in the cross-coupling and the reductive cyclization. It was found that addition of 1,3-bis(diphenylphosphino)propane and carbon monoxide after completion of the Barluenga reaction afforded, in most cases, significantly better overall yields.
Collapse
|
12
|
Kurma SH, Sridhar B, Bhimapaka CR. Direct Access for the Regio- and Stereoselective Synthesis of N-Alkenylpyrazoles and Chromenopyrazoles. J Org Chem 2021; 86:2271-2282. [PMID: 33465310 DOI: 10.1021/acs.joc.0c02421] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A highly regio- and stereoselective method was developed for the preparation of N-alkenylpyrazoles and chromenopyrazoles by the reaction of N-tosylhydrazones and salicyl N-tosylhydrazones with alkynes under neat conditions in the presence of La(OTf)3. The present study was found to be efficient and convenient for direct access to N-alkenylpyrazoles and chromenopyrazoles through C-C, C-N, and C-O bond forming reactions. Structure assignment of N-alkenylpyrazole compound 5c was confirmed by X-ray analysis.
Collapse
|
13
|
Yan K, He M, Li J, He H, Lai R, Luo Y, Guo L, Wu Y. Palladium-catalyzed cross-coupling reaction of sulfoxonium ylides and benzyl bromides by carbene migratory insertion. Chem Commun (Camb) 2020; 56:14287-14290. [PMID: 33130834 DOI: 10.1039/d0cc06236g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A palladium-catalyzed cross-coupling reaction of sulfoxonium ylides and benzyl bromides has been developed, which has potential safety advantages over previous carbene coupling reactions using either diazo compounds or their in situ precursors. This reaction affords polysubstituted olefins, and features good substrate tolerance and is suitable for late-stage modification of biologically active molecules. Pd-carbene migratory insertion is supposed to be involved in this coupling reaction.
Collapse
Affiliation(s)
- Kaichuan Yan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, No. 17 Southern Renmin Road, Chengdu, Sichuan 610041, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Lamaa D, Hauguel C, Lin HP, Messe E, Gandon V, Alami M, Hamze A. Sequential One-Pot Synthesis of 3-Arylbenzofurans from N-Tosylhydrazones and Bromophenol Derivatives. J Org Chem 2020; 85:13664-13673. [PMID: 33091298 DOI: 10.1021/acs.joc.0c01835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A divergent and efficient one-pot sequence allowing direct access to 3-arylbenzofuran derivatives has been developed. The process, involving N-tosylhydrazones and bromophenols, proceeds via a palladium-catalyzed Barluenga-Valdés cross-coupling, followed by an aerobic, copper-catalyzed, radical cyclization to form Csp2-Csp2 and O-Csp2 bonds. 3-Arylated benzofurans bearing various substituents were obtained with good to excellent yields (up to 90%). Mechanistic investigation strongly supports a radical process for the cyclization step.
Collapse
Affiliation(s)
- Diana Lamaa
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Camille Hauguel
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Hsin-Ping Lin
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Estelle Messe
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Vincent Gandon
- Institut de Chimie Moleculaire et des Materiaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Batiment 420, 91405 Orsay Cedex, France.,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau Cedex, France
| | - Mouad Alami
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| | - Abdallah Hamze
- Université Paris-Saclay, CNRS, BioCIS, 92290 Châtenay-Malabry, France
| |
Collapse
|
15
|
Pecnard S, Provot O, Levaique H, Bignon J, Askenatzis L, Saller F, Borgel D, Michallet S, Laisne MC, Lafanechère L, Alami M, Hamze A. Cyclic bridged analogs of isoCA-4: Design, synthesis and biological evaluation. Eur J Med Chem 2020; 209:112873. [PMID: 33038796 DOI: 10.1016/j.ejmech.2020.112873] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022]
Abstract
In this work, a series of cyclic bridged analogs of isocombretastatin A-4 (isoCA-4) with phenyl or pyridine linkers were designed and synthesized. The synthesis of the desired analogs was performed by the formation of nitro-vinyl intermediates, followed by a Cadogan cyclization. Structure activity relationship (SAR) study demonstrates the critical role of the combination of quinaldine as ring A, pyridine as the linker, and indole as ring B in the same molecule, for the cytotoxic activity. Among all tested compounds, compound 42 showed the highest antiproliferative activity against a panel of cancer cell lines with average IC50 values of 5.6 nM. Also, compound 42 showed high antiproliferative activity against the MDR1-overexpressing K562R cell line; thus, it was 1.5- and 12-fold more active than the reference compounds, isoCA-4 and CA-4, respectively. Moreover, 42 displayed a strong antiproliferative activity against the colon-carcinoma cells (HT-29), which are resistant to combretastatin A-4 and isoCA-4, and it was found to be 8000-fold more active than natural CA-4. Compound 42 also effectively inhibited tubulin polymerization both in vitro and in cells, and induced cell cycle arrest in G2/M phase. Next, we demonstrated that compound 42 dose-dependently caused caspase-induced apoptosis of K562 cells through mitochondrial dysfunction. Finally, we evaluated the effect of compound 42 in human no cancer cells compared to the reference compound. We demonstrated that 42 was 73 times less cytotoxic than isoCA-4 in quiescent peripheral blood lymphocytes (PBLs). In summary, these results suggest that compound 42 represents a promising tubulin inhibitor worthy of further investigation.
Collapse
Affiliation(s)
- Shannon Pecnard
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Olivier Provot
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Hélène Levaique
- Institut de Chimie des Substances Naturelles, UPR 2301, CNRS, F-91198, Gif sur Yvette, France
| | - Jérome Bignon
- Institut de Chimie des Substances Naturelles, UPR 2301, CNRS, F-91198, Gif sur Yvette, France
| | - Laurie Askenatzis
- Institut de Chimie des Substances Naturelles, UPR 2301, CNRS, F-91198, Gif sur Yvette, France
| | - Francois Saller
- INSERM, UMR-S1176, University Paris-Saclay, F-94276, Le Kremlin-Bicetre, France
| | - Delphine Borgel
- INSERM, UMR-S1176, University Paris-Saclay, F-94276, Le Kremlin-Bicetre, France
| | - Sophie Michallet
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Marie-Catherine Laisne
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Laurence Lafanechère
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, Grenoble, France
| | - Mouad Alami
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France
| | - Abdallah Hamze
- Université Paris-Saclay, CNRS, BioCIS, 92290, Châtenay-Malabry, France.
| |
Collapse
|
16
|
Zhao S, Chen K, Zhang L, Yang W, Huang D. Sulfonyl Hydrazides in Organic Synthesis: A Review of Recent Studies. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000466] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Shuangte Zhao
- Department of ChemistryLishui University Lishui City 323000, Zhejiang Province, P. R. People's Republic of China
| | - Kaijun Chen
- Department of ChemistryLishui University Lishui City 323000, Zhejiang Province, P. R. People's Republic of China
| | - Ling Zhang
- Department of ChemistryLishui University Lishui City 323000, Zhejiang Province, P. R. People's Republic of China
| | - Weiguang Yang
- The Marine Biomedical Research InstituteGuangdong Medical University Zhanjiang 524023, Guangdong Province
| | - Dayun Huang
- Department of ChemistryLishui University Lishui City 323000, Zhejiang Province, P. R. People's Republic of China
| |
Collapse
|
17
|
Sullivan RJ, Freure GPR, Newman SG. Overcoming Scope Limitations in Cross-Coupling of Diazo Nucleophiles by Manipulating Catalyst Speciation and Using Flow Diazo Generation. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01180] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ryan J. Sullivan
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Garrett P. R. Freure
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| | - Stephen G. Newman
- Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|