1
|
Vergoten G, Bailly C. Interaction of Norsecurinine-Type Oligomeric Alkaloids with α-Tubulin: A Molecular Docking Study. PLANTS (BASEL, SWITZERLAND) 2024; 13:1269. [PMID: 38732484 PMCID: PMC11085049 DOI: 10.3390/plants13091269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
The medicinal plant Securinega virosa (Roxb ex. Willd) Baill., also known as Flueggea virosa (Roxb. ex Willd.) Royle, is commonly used in traditional medicine in Africa and Asia for the management of diverse pathologies, such as parasite infections, diabetes, and gastrointestinal diseases. Numerous alkaloids have been isolated from the twigs and leaves of the plant, notably a variety of oligomeric indolizidine alkaloids derived from the monomers securinine and norsecurinine which both display anticancer properties. The recent discovery that securinine can bind to tubulin and inhibit microtubule assembly prompted us to investigate the potential binding of two series of alkaloids, fluevirosines A-H and fluevirosinine A-J, with the tubulin dimer by means of molecular modeling. These natural products are rare high-order alkaloids with tri-, tetra-, and pentameric norsecurinine motifs. Despite their large size (up to 2500 Å3), these alkaloids can bind easily to the large drug-binding cavity (about 4800 Å3) on α-tubulin facing the β-tubulin unit. The molecular docking analysis suggests that these hydrophobic macro-alkaloids can form stable complexes with α/β-tubulin. The tubulin-binding capacity varies depending on the alkaloid size and structure. Structure-binding relationships are discussed. The docking analysis identifies the trimer fluevirosine D, tetramer fluevirosinine D, and pentamer fluevirosinine H as the most interesting tubulin ligands in the series. This study is the first to propose a molecular target for these atypical oligomeric Securinega alkaloids.
Collapse
Affiliation(s)
- Gérard Vergoten
- U1286—INFINITE, Lille Inflammation Research International Center, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, University of Lille, 3 rue du Professeur Laguesse, 59006 Lille, France
| | - Christian Bailly
- CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institut, University of Lille, 59000 Lille, France
- Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, 59006 Lille, France
- OncoWitan, Scientific Consulting Office, 59290 Lille, France
| |
Collapse
|
2
|
Kang G, Park S, Han S. Synthesis of High-Order and High-Oxidation State Securinega Alkaloids. Acc Chem Res 2023; 56:140-156. [PMID: 36594722 DOI: 10.1021/acs.accounts.2c00719] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Securinega alkaloids, composed of more than 100 members characterized by the compact tetracyclic scaffold, have fascinated the synthetic community with their structural diversity and notable bioactivities. On the basis of the structural phenotype, oligomerizations and oxidations are major biosynthetic diversification modes of the basic Securinega framework. Despite the rich history of synthesis of basic monomeric Securinega alkaloids, the synthesis of oligomeric Securinega alkaloids, as well as oxidized derivatives, has remained relatively unexplored because of their extra structural complexity. In the first half of this Account, our synthetic studies toward high-order Securinega alkaloids are described. We aimed to establish a reliable synthetic method to form C14-C15' and C12-C15' bonds, which are prevalent connection modes between monomers. During our total synthesis of flueggenine C (9), we have invented an accelerated Rauhut-Currier reaction capable of forming the C14-C15' bond stereoselectively. Installation of the nucleophilic functionality to the Michael acceptor, which ushers the C-C bond forming conjugate addition to follow the intramolecular pathway, was the key to success. The C12-C15' linkage, which was inaccessible via an accelerated Rauhut-Currier reaction, was established by devising a complementary cross-coupling/conjugate reduction-based dimerization strategy that enabled the total synthesis of flueggenines D (11) and I (14). In this approach, the C12-C15' linkage was established via a Stille cross-coupling, and the stereochemistry of the C15' position was controlled during the following conjugate reduction step. In the later half of this Account, our achievements in the field of high-oxidation state Securinega alkaloids synthesis are depicted. We have developed oxidative transformations at the N1 and C2-C4 positions, where the biosynthetic oxidation event occurs most frequently. The discovery of a VO(acac)2-mediated regioselective Polonovski reaction allowed us to access the key 2,3-dehydroallosecurinine (112). Divergent synthesis of secu'amamine A (62) and fluvirosaones A (60) and B (61) was accomplished by exploiting the versatile reactivities of the C2/C3 enamine moiety in 112. We have also employed a fragment-coupling strategy between menisdaurilide and piperidine units, which allowed the installation of various oxygen-containing functionality on the piperidine ring. Combined with the late-stage, light-mediated epimerization and well-orchestrated oxidative modifications, collective total synthesis of seven C4-oxygenated securinine-type natural products was achieved. Lastly, the synthesis of flueggeacosine B (70) via two synthetic routes from allosecurinine (103) was illustrated. The first-generation synthesis (seven overall steps) employing Pd-catalyzed cross-coupling between stannane and thioester to form the key C3-C15' bond enabled the structural revision of the natural product. In the second-generation synthesis, we have invented visible-light-mediated, Cu-catalyzed cross-dehydrogenative coupling (CDC) between an aldehyde and electron-deficient olefin, which streamlined the synthetic pathway into four overall steps. Organisms frequently utilize dimerization (oligomerization) and oxidations during the biosynthesis as a means to expand the chemical space of their secondary metabolites. Therefore, methods and strategies for dimerizations and oxidations that we have developed using the Securinega alkaloids as a platform would be broadly applicable to other alkaloids. It is our sincere hope that lessons we have learned during our synthetic journey would benefit other chemists working on organic synthesis.
Collapse
Affiliation(s)
- Gyumin Kang
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sangbin Park
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sunkyu Han
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Kang G, Baik M, Han S. Calculation‐Assisted
Stereochemical Analysis of Securingine A. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gyumin Kang
- Department of Chemistry Korea Advanced Institute of Science and Technology, 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science, 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea
| | - Mu‐Hyun Baik
- Department of Chemistry Korea Advanced Institute of Science and Technology, 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science, 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea
| | - Sunkyu Han
- Department of Chemistry Korea Advanced Institute of Science and Technology, 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science, 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea
| |
Collapse
|
4
|
Jeon S, Lee J, Park S, Han S. Total synthesis of dimeric Securinega alkaloids (-)-flueggenines D and I. Chem Sci 2020; 11:10934-10938. [PMID: 34123190 PMCID: PMC8162258 DOI: 10.1039/d0sc03057k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/06/2020] [Indexed: 11/21/2022] Open
Abstract
We describe the total synthesis of (-)-flueggenines D and I. This features the first total synthesis of dimeric Securinega alkaloids with a C(α)-C(δ') connectivity between two monomeric units. The key dimerization was enabled by a sequence that involves Stille reaction and conjugate reduction. The high chemofidelity of the Stille reaction enabled us to assemble two structurally complex fragments that could not be connected by other methods. Stereochemical flexibility and controllability at the δ'-junction of the dimeric intermediate render our synthetic strategy broadly applicable to the synthesis of other high-order Securinega alkaloids.
Collapse
Affiliation(s)
- Sangbin Jeon
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST) Daejeon 34141 South Korea
| | - Jinwoo Lee
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST) Daejeon 34141 South Korea
| | - Sangbin Park
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST) Daejeon 34141 South Korea
| | - Sunkyu Han
- Department of Chemistry, Korea Advanced Institute of Science & Technology (KAIST) Daejeon 34141 South Korea
| |
Collapse
|
5
|
Lambert KM, Cox JB, Liu L, Jackson AC, Yruegas S, Wiberg KB, Wood JL. Total Synthesis of (±)‐Phyllantidine: Development and Mechanistic Evaluation of a Ring Expansion for Installation of Embedded Nitrogen‐Oxygen Bonds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Kyle M. Lambert
- Department of Chemistry and Biochemistry Baylor University One Bear Place 97348 Waco TX 76798 USA
| | - Joshua B. Cox
- Department of Chemistry and Biochemistry Baylor University One Bear Place 97348 Waco TX 76798 USA
| | - Lin Liu
- Department of Chemistry and Biochemistry Baylor University One Bear Place 97348 Waco TX 76798 USA
| | - Amy C. Jackson
- Department of Chemistry and Biochemistry Baylor University One Bear Place 97348 Waco TX 76798 USA
| | - Sam Yruegas
- Department of Chemistry and Biochemistry Baylor University One Bear Place 97348 Waco TX 76798 USA
| | - Kenneth B. Wiberg
- Department of Chemistry Yale University New Haven CT 06520 USA
- 865 Central Avenue Needham MA 02492 USA
| | - John L. Wood
- Department of Chemistry and Biochemistry Baylor University One Bear Place 97348 Waco TX 76798 USA
| |
Collapse
|
6
|
Lambert KM, Cox JB, Liu L, Jackson AC, Yruegas S, Wiberg KB, Wood JL. Total Synthesis of (±)-Phyllantidine: Development and Mechanistic Evaluation of a Ring Expansion for Installation of Embedded Nitrogen-Oxygen Bonds. Angew Chem Int Ed Engl 2020; 59:9757-9766. [PMID: 32271982 DOI: 10.1002/anie.202003829] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/05/2020] [Indexed: 11/06/2022]
Abstract
The development of a concise total synthesis of (±)-phyllantidine (1), a member of the securinega family of alkaloids containing an unusual oxazabicyclo[3.3.1]nonane core, is described. The synthesis employs a unique synthetic strategy featuring the ring expansion of a substituted cyclopentanone to a cyclic hydroxamic acid as a key step that allows facile installation of the embedded nitrogen-oxygen (N-O) bond. The optimization of this sequence to effect the desired regiochemical outcome and its mechanistic underpinnings were assessed both computationally and experimentally. This synthetic approach also features an early-stage diastereoselective aldol reaction to assemble the substituted cyclopentanone, a mild reduction of an amide intermediate without N-O bond cleavage, and the rapid assembly of the butenolide found in (1) via use of the Bestmann ylide.
Collapse
Affiliation(s)
- Kyle M Lambert
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place 97348, Waco, TX, 76798, USA
| | - Joshua B Cox
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place 97348, Waco, TX, 76798, USA
| | - Lin Liu
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place 97348, Waco, TX, 76798, USA
| | - Amy C Jackson
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place 97348, Waco, TX, 76798, USA
| | - Sam Yruegas
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place 97348, Waco, TX, 76798, USA
| | - Kenneth B Wiberg
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA.,865 Central Avenue, Needham, MA, 02492, USA
| | - John L Wood
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place 97348, Waco, TX, 76798, USA
| |
Collapse
|
7
|
Zhu Z, Chen C, Jiang J, Zhang Q, Du Z, Wei S, Song X, Tang J, Lei J, Ke Z, Zou Y. Synthesis and biological evaluation of suffrutines A, B and their N-fused analogues. Org Chem Front 2020. [DOI: 10.1039/d0qo00050g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The synthesis, structure confirmation, stability and isomerization features of suffrutines A, B and their N-fused analogues were reported. Biological tests showed that the introduction of nitrogen atom might be beneficial to the anticancer activity.
Collapse
Affiliation(s)
- Zefeng Zhu
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510000
- P. R. China
| | - Chun Chen
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510000
- P. R. China
| | - Jingxing Jiang
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510000
- P. R. China
| | - Qianzhong Zhang
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510000
- P. R. China
| | - Zhibo Du
- Zhongshan WanHan Pharmceutical Co
- Ltd
- Zhongshan 528451
- P. R. China
| | - Shuxian Wei
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510000
- P. R. China
| | - Xianheng Song
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510000
- P. R. China
| | - Jie Tang
- Pharmacy Department of Nanchong Central Hospital and the Second Clinical Hospital of North Sichuan Medical College
- Nanchong
- P. R. China
| | - Jinping Lei
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510000
- P. R. China
| | - Zhuofeng Ke
- School of Chemistry
- Sun Yat-sen University
- Guangzhou 510000
- P. R. China
| | - Yong Zou
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510000
- P. R. China
| |
Collapse
|