1
|
Arena D, Verde-Sesto E, Rivilla I, Pomposo JA. Artificial Photosynthases: Single-Chain Nanoparticles with Manifold Visible-Light Photocatalytic Activity for Challenging "in Water" Organic Reactions. J Am Chem Soc 2024; 146:14397-14403. [PMID: 38639303 PMCID: PMC11140743 DOI: 10.1021/jacs.4c02718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/20/2024]
Abstract
Photocatalyzed reactions of organic substances in aqueous media are challenging transformations, often because of scarce solubility of substrates and catalyst deactivation. Herein, we report single-chain nanoparticles, SCNPs, capable of efficiently catalyzing four different "in water" organic reactions by employing visible light as the only external energy source. Specifically, we decorated a high-molecular-weight copolymer, poly(OEGMA300-r-AEMA), with iridium(III) cyclometalated complex pendants at varying content amounts. The isolated functionalized copolymers demonstrated self-assembly into noncovalent, amphiphilic SCNPs in water, which enabled efficient visible-light photocatalysis of two reactions unprecedentedly reported in water, namely, [2 + 2] photocycloaddition of vinyl arenes and α-arylation of N-arylamines. Additionally, aerobic oxidation of 9-substituted anthracenes and β-sulfonylation of α-methylstyrene were successfully carried out in aqueous media. Hence, by merging metal-mediated photocatalysis and SCNPs for the fabrication of artificial photoenzyme-like nano-objects─i.e., artificial photosynthases (APS)─our work broadens the possibilities for performing challenging "in water" organic transformations via visible-light photocatalysis.
Collapse
Affiliation(s)
- Davide Arena
- Centro
de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center
MPC, P° Manuel Lardizabal 5, E-20018 Donostia, Spain
| | - Ester Verde-Sesto
- Centro
de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center
MPC, P° Manuel Lardizabal 5, E-20018 Donostia, Spain
- IKERBASQUE-Basque
Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
| | - Iván Rivilla
- IKERBASQUE-Basque
Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
- Departamento
de Química Orgánica I, Centro de Innovación en
Química Avanzada (ORFEO−CINQA), University of the Basque Country (UPV/EHU), Faculty of Chemistry, P° Manuel Lardizabal 3, E-20018 Donostia, Spain
- Donostia
International Physics Center (DIPC), P° Manuel Lardizabal 4, E-20018 Donostia, Spain
| | - José A. Pomposo
- Centro
de Física de Materiales (CSIC-UPV/EHU)-Materials Physics Center
MPC, P° Manuel Lardizabal 5, E-20018 Donostia, Spain
- IKERBASQUE-Basque
Foundation for Science, Plaza Euskadi 5, E-48009 Bilbao, Spain
- Departamento
de Polímeros y Materiales Avanzados: Física, Química
y Tecnología, University of the Basque
Country (UPV/EHU), Faculty of Chemistry, P° Manuel Lardizabal 3, E-20018 Donostia, Spain
| |
Collapse
|
2
|
Lin RD, Xing X, Yu Y, Li WD, Chang DD, Tao FY, Wang N. Theoretical Analysis of Selectivity Differences in Ketoreductases toward Aldehyde and Ketone Carbonyl Groups. J Chem Inf Model 2024; 64:3400-3410. [PMID: 38537611 DOI: 10.1021/acs.jcim.3c01996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Lactobacillus kefir alcohol dehydrogenase (LkADH) and ketoreductase from Chryseobacterium sp. CA49 (ChKRED12) exhibit different chemoselectivity and stereoselectivity toward a substrate with both keto and aldehyde carbonyl groups. LkADH selectively reduces the keto carbonyl group while retaining the aldehyde carbonyl group, producing optically pure R-alcohols. In contrast, ChKRED12 selectively reduces the aldehyde group and exhibits low reactivity toward ketone carbonyls. This study investigated the structural basis for these differences and the role of specific residues in the active site. Molecular dynamics (MD) simulations and quantum chemical calculations were used to investigate the interactions between the substrate and the enzymes and the essential cause of this phenomenon. The present study has revealed that LkADH and ChKRED12 exhibit significant differences in the structure of their respective active pockets, which is a crucial determinant of their distinct chemoselectivity toward the same substrate. Moreover, residues N89, N113, and E144 within LkADH as well as Q151 and D190 within ChKRED12 have been identified as key contributors to substrate stabilization within the active pocket through electrostatic interactions and van der Waals forces, followed by hydride transfer utilizing the coenzyme NADPH. Furthermore, the enantioselectivity mechanism of LkADH has been elucidated using quantum chemical methods. Overall, these findings not only provide fundamental insights into the underlying reasons for the observed differences in selectivity but also offer a detailed mechanistic understanding of the catalytic reaction.
Collapse
Affiliation(s)
- Ru-De Lin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiu Xing
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yuan Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Wen-Dian Li
- Harmful Components and Tar Reduction in Cigarette Key Laboratory of Sichuan Province, China Tobacco Sichuan Industrial Co., Ltd., Chengdu 610066, China
- Sichuan Sanlian New Material Co., Ltd., Chengdu 610041, China
| | - Dan-Dan Chang
- Harmful Components and Tar Reduction in Cigarette Key Laboratory of Sichuan Province, China Tobacco Sichuan Industrial Co., Ltd., Chengdu 610066, China
- Sichuan Sanlian New Material Co., Ltd., Chengdu 610041, China
| | - Fei-Yan Tao
- Harmful Components and Tar Reduction in Cigarette Key Laboratory of Sichuan Province, China Tobacco Sichuan Industrial Co., Ltd., Chengdu 610066, China
- Sichuan Sanlian New Material Co., Ltd., Chengdu 610041, China
| | - Na Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
3
|
González JM, Rubial B, Ballesteros A. Silylium‐Catalyzed Alkynylation and Etherification Reactions of Benzylic Acetates. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- José Manuel González
- Universidad de Oviedo Quimica Organica e Inorganica Julian Claveria 8 33006 Oviedo SPAIN
| | - Belén Rubial
- Universidad de Oviedo Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica "Enrique Moles" SPAIN
| | - Alfredo Ballesteros
- Universidad de Oviedo Departamento de Química Orgánica e Inorgánica and Instituto de Química Organometálica "Enrique Moles" SPAIN
| |
Collapse
|
4
|
Wang H, Wang X, Tian X, Cheng W, Zheng Y, Obenchain DA, Xu X, Gou Q. Competitive tetrel bond and hydrogen bond in benzaldehyde-CO 2: characterization via rotational spectroscopy. Phys Chem Chem Phys 2021; 23:25784-25788. [PMID: 34757355 DOI: 10.1039/d1cp03608d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rotational spectrum of the 1 : 1 benzaldehyde-CO2 complex has been investigated using pulsed-jet Fourier transform microwave spectroscopy complemented with quantum chemical calculations. Two isomers, both characterized by one C⋯O tetrel bond (n → π* interaction) and one C-H⋯O hydrogen bond (n → σ* interaction), have been observed in the pulsed jet. Competition between the tetrel bond and the hydrogen bond has been disclosed by natural bond orbital analysis: isomer I is characterized by one dominating OCCO2⋯O tetrel bond (12.6 kJ mol-1) and a secondary (C-H)formyl⋯O hydrogen bond (2.2 kJ mol-1); by contrast, in isomer II the (C-H)phenyl⋯O hydrogen bond (7.6 kJ mol-1) becomes the dominant bond, while the OCCO2⋯O tetrel bond (5.8 kJ mol-1) becomes much weaker with respect to that of isomer I. Using intensity measurements the relative population ratio of the two isomers was estimated to be NI/NII ≈ 2/1.
Collapse
Affiliation(s)
- Hao Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Xiujuan Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Xiao Tian
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Wanying Cheng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Yang Zheng
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Daniel A Obenchain
- Institut für Physikalische Chemie, Universität Göttingen, Tammannstr. 6, 37077 Göttingen, Germany
| | - Xuefang Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China.
| | - Qian Gou
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331, Chongqing, China. .,Chongqing Key Laboratory of Theoretical and Computational Chemistry, Daxuecheng South Rd 55, 401331, Chongqing, China
| |
Collapse
|
5
|
Nishimoto Y, Yasuda M, Wang F, Yi J. Homologation of Alkyl Acetates, Alkyl Ethers, Acetals, and Ketals by Formal Insertion of Diazo Compounds into a Carbon–Carbon Bond. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1523-1551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
AbstractHomologation of alkyl acetates, alkyl ethers, acetals, and ketals was accomplished via formal insertion of diazo esters into carbon–carbon σ-bonds. The combined Lewis acid InI3 with Me3SiBr catalyzed the homologation of alkyl acetates and alkyl ethers. That of acetals and ketals was catalyzed solely by the use of InBr3. The key point of the homologation mechanism is that the indium-based Lewis acids have the appropriate amount of Lewis acidity to achieve both the abstraction and release of leaving groups. The abstraction of a leaving group by an indium-based Lewis acid and the electrophilic addition of carbocation or oxonium intermediates to diazo esters followed by the rearrangement of carbon substituents provide the corresponding cation intermediates. Finally, the leaving group that is captured by the Lewis acid bonds with cation intermediates to furnish the homologated products.
Collapse
Affiliation(s)
- Yoshihiro Nishimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University
| | - Makoto Yasuda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University
| | - Fei Wang
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University
| | - Junyi Yi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University
| |
Collapse
|
6
|
Cai M, You S, Zhang R. A Magnetically Recyclable Palladium-Catalyzed Formylation of Aryl Iodides with Formic Acid as CO Source: A Practical Access to Aromatic Aldehydes. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1706621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractA magnetically recyclable palladium-catalyzed formylation of aryl iodides under CO gas-free conditions has been developed by using a bidentate phosphine ligand-modified magnetic nanoparticles-anchored palladium(II) complex [2P-Fe3O4@SiO2-Pd(OAc)2] as catalyst, yielding a wide variety of aromatic aldehydes in moderate to excellent yields. Here, formic acid was employed as both the CO source and the hydrogen donor with iodine and PPh3 as the activators. This immobilized palladium catalyst can be obtained via a simple preparative procedure and can be facilely recovered simply by using an external magnetic field, and reused at least 9 times without any apparent loss of catalytic activity.
Collapse
Affiliation(s)
- Mingzhong Cai
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education and College of Chemistry & Chemical Engineering, Jiangxi Normal University
| | - Shengyong You
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education and College of Chemistry & Chemical Engineering, Jiangxi Normal University
- Institute of Applied Chemistry, Jiangxi Academy of Sciences
| | - Rongli Zhang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education and College of Chemistry & Chemical Engineering, Jiangxi Normal University
| |
Collapse
|
7
|
Metal-free synthesis of unsymmetrical selenides from pyridinium salts and diselenides catalysed by visible light. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
|
9
|
Thapa P, Hazoor S, Chouhan B, Vuong TT, Foss FW. Flavin Nitroalkane Oxidase Mimics Compatibility with NOx/TEMPO Catalysis: Aerobic Oxidization of Alcohols, Diols, and Ethers. J Org Chem 2020; 85:9096-9105. [PMID: 32569467 DOI: 10.1021/acs.joc.0c01013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Biomimetic flavin organocatalysts oxidize nitromethane to formaldehyde and NOx-providing a relatively nontoxic, noncaustic, and inexpensive source for catalytic NO2 for aerobic TEMPO oxidations of alcohols, diols, and ethers. Alcohols were oxidized to aldehydes or ketones, cyclic ethers to esters, and terminal diols to lactones. In situ trapping of NOx and formaldehyde suggest an oxidative Nef process reminiscent of flavoprotein nitroalkane oxidase reactivity, which is achieved by relatively stable 1,10-bridged flavins. The metal-free flavin/NOx/TEMPO catalytic cycles are uniquely compatible, especially compared to other Nef and NOx-generating processes, and reveal selectivity over flavin-catalyzed sulfoxide formation. Aliphatic ethers were oxidized by this method, as demonstrated by the conversion of (-)-ambroxide to (+)-sclareolide.
Collapse
Affiliation(s)
- Pawan Thapa
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Shan Hazoor
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Bikash Chouhan
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Thanh Thuy Vuong
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| | - Frank W Foss
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019-0065, United States
| |
Collapse
|
10
|
Ji X, Huang Z, Lumb JP. Synthesis of 1,2-Dihydroisoquinolines by a Modified Pomeranz–Fritsch Cyclization. J Org Chem 2019; 85:1062-1072. [PMID: 31854981 DOI: 10.1021/acs.joc.9b02987] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiang Ji
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Zheng Huang
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Jean-Philip Lumb
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
11
|
Wei TB, Ma XQ, Fan YQ, Jiang XM, Dong HQ, Yang QY, Zhang YF, Yao H, Lin Q, Zhang YM. Aggregation-induced emission supramolecular organic framework (AIE SOF) gels constructed from tri-pillar[5]arene-based foldamer for ultrasensitive detection and separation of multi-analytes. SOFT MATTER 2019; 15:6753-6758. [PMID: 31397832 DOI: 10.1039/c9sm01385g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this study, a novel aggregation-induced emission supramolecular organic framework (AIE SOF) with ultrasensitive response, termed FSOF, was constructed using a tri-pillar[5]arene-based foldamer. Interestingly, benefiting from the noise signal shielding properties of FSOF as well as the competition between the cationπ and ππ interactions, the FSOF shows an ultrasensitive response for multi-analytes, such as Fe3+, Hg2+ and Cr3+. The limits of detection (LODs) of the FSOF for Fe3+, Hg2+ and Cr3+ are in the range of 9.40 × 10-10-1.86 × 10-9. More importantly, the xerogel of FSOF exhibits porous mesh structures, which could effect high-efficiency separation above metal ions from their aqueous solution, with adsorption percentages in the range 92.39-99.99%. In addition, by introducing metal ions into the FSOF, a series of metal ions coordinated supramolecular organic frameworks (MSOFs) were successfully constructed. Moreover, MSOFs show selective fluorescence "turn on" ultrasensitive detection CN- (LOD = 2.12 × 10-9) and H2PO4- (LOD = 1.78 × 10-9). This is a novel approach to construct SOFs through a tri-pillar[5]arene-based foldamer, and also provides a new way to achieve ultrasensitive detection and high-efficiency separation.
Collapse
Affiliation(s)
- Tai-Bao Wei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Laboratory of Eco-environmental Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|