1
|
Kumari R, Singh M. Versatile photocatalytic activities of indenoquinoxalines for dye reduction, single-crystal nucleation, and MNP formation with iron scrap under sunlight. RSC Adv 2024; 14:38426-38458. [PMID: 39635365 PMCID: PMC11616715 DOI: 10.1039/d4ra04808c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/14/2024] [Indexed: 12/07/2024] Open
Abstract
In this work, 11H-indeno[1,2-b]quinoxalin-11-one (IQ), 7-nitro-11H-indeno[1,2-b]quinoxalin-11-one (NIQ), and 7-chloro-11H-indeno[1,2-b]quinoxalin-11-one (CIQ) as indenoquinoxalines (IQPs) and 7-nitro-2'-(4-nitrophenyl)-5',6',7',7a'-tetrahydrospiro[indeno[1,2-b]quinoxaline-11,3'-pyrrolizine]-1',1'(2'H)-dicarbonitrile (SIQPNO2) spiroheterocyclics were synthesized. These molecules photocatalytically reduced methylene blue (MB), methyl orange (MO), brilliant blue R (BBR), and Rhodamine B (RhB) in aqueous acetonitrile (aq-ACN) under sunlight (SL) for the first time. The IQPs and SIQPNO2 with a lanthanide graphene oxide template (LGT) of lanthanide sulfide nanorods (Ln2S3, Ce2S3, Tb2S3, and Ho2S3) photocatalytically reduced the dyes. IQ alone reduced MB in ∼2 min, while with LaGT, CeGT, TbGT, and HoGT in 7, 10, 11, and 13 min, respectively. NIQ and CIQ alone photocatalytically reduced MB in 18 and 32 min, while with LaGT, CeGT, TbGT, and HoGT in 18, 31, 23, and 28 min and 33, 55, 45, and 51 min, respectively. IQ with CO2 photocatalytically reduced MB and QHIn in 90 s and 17 min unlike 2 and 24 min without CO2, respectively. SIQPNO2 alone reduced MB in 190 min, while with CeGT, TbGT, HoGT, and LaGT in 242, 225, 197, and 88 min, respectively. IQ with LaGT photocatalytically reduced MB in 7 min, while SIQPNO2 with LaGT in 88 min. IQ received maximum photon (hv) producing robust redox cycles (ROCs) compared to SIQPNO2. SIQPI, SIQPII, SIQPIII, and SIQPNO2 (SIQPs) individually reduced MB in 95, 43, 54, and 190 min, while SIQPs with NIQ in 63, 35, 47, and 64 min, respectively. IQ with Fe scrap in ACN developed a single crystal in 2 weeks, while in 2 : 8, 3 : 7, 5 : 5, 7 : 3, and 8 : 2 aq-ACN media, the magnetic nanoparticles (MNPs) developed at normal temperature and pressure (NTP).
Collapse
Affiliation(s)
- Renu Kumari
- Central University of Gujarat Gandhinagar India +91-079-23260076 +91-079-23260210
| | - Man Singh
- Central University of Gujarat Gandhinagar India +91-079-23260076 +91-079-23260210
| |
Collapse
|
2
|
Sankara CS, Namboothiri INN. Hauser-Kraus Annulation Initiated Multi-Cascade Reactions for Facile Access to Functionalized and Fused Oxazepines, Carbazoles and Phenanthridinediones. Chemistry 2024; 30:e202303517. [PMID: 37946675 DOI: 10.1002/chem.202303517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/12/2023]
Abstract
The Hauser-Kraus (H-K) annulation of N-unsubstituted 3-olefinic oxindoles with 3-nucleophilic phthalides triggers a cascade of ring expansion and ring contraction reactions through several regioselective steps in one pot. While oxazepines were isolated in the presence of stoichiometric amounts of base at room temperature, carbazoles and phenanthridinediones were the products in the presence of excess base and microwave irradiation. Mechanistic studies guided by stepwise reactions and control experiments revealed that the isolable oxazepine intermediate, formed via ring expansion of the H-K adduct, is the key precursor to carbazole and phenanthridinedione via decarboxylative regioselective cyclizations.
Collapse
|
3
|
Santos LH, Kronenberger T, Almeida RG, Silva EB, Rocha REO, Oliveira JC, Barreto LV, Skinner D, Fajtová P, Giardini MA, Woodworth B, Bardine C, Lourenço AL, Craik CS, Poso A, Podust LM, McKerrow JH, Siqueira-Neto JL, O’Donoghue AJ, da Silva
Júnior EN, Ferreira RS. Structure-Based Identification of Naphthoquinones and Derivatives as Novel Inhibitors of Main Protease M pro and Papain-like Protease PL pro of SARS-CoV-2. J Chem Inf Model 2022; 62:6553-6573. [PMID: 35960688 PMCID: PMC9397563 DOI: 10.1021/acs.jcim.2c00693] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 01/07/2023]
Abstract
The worldwide COVID-19 pandemic caused by the coronavirus SARS-CoV-2 urgently demands novel direct antiviral treatments. The main protease (Mpro) and papain-like protease (PLpro) are attractive drug targets among coronaviruses due to their essential role in processing the polyproteins translated from the viral RNA. In this study, we virtually screened 688 naphthoquinoidal compounds and derivatives against Mpro of SARS-CoV-2. Twenty-four derivatives were selected and evaluated in biochemical assays against Mpro using a novel fluorogenic substrate. In parallel, these compounds were also assayed with SARS-CoV-2 PLpro. Four compounds inhibited Mpro with half-maximal inhibitory concentration (IC50) values between 0.41 μM and 9.0 μM. In addition, three compounds inhibited PLpro with IC50 ranging from 1.9 μM to 3.3 μM. To verify the specificity of Mpro and PLpro inhibitors, our experiments included an assessment of common causes of false positives such as aggregation, high compound fluorescence, and inhibition by enzyme oxidation. Altogether, we confirmed novel classes of specific Mpro and PLpro inhibitors. Molecular dynamics simulations suggest stable binding modes for Mpro inhibitors with frequent interactions with residues in the S1 and S2 pockets of the active site. For two PLpro inhibitors, interactions occur in the S3 and S4 pockets. In summary, our structure-based computational and biochemical approach identified novel naphthoquinonal scaffolds that can be further explored as SARS-CoV-2 antivirals.
Collapse
Affiliation(s)
- Lucianna H. Santos
- Department of Biochemistry and Immunology,
Federal University of Minas Gerais, Belo Horizonte, Minas
Gerais 31270-901, Brazil
| | - Thales Kronenberger
- Department of Oncology and Pneumonology, Internal
Medicine VIII, University Hospital Tübingen,
Otfried-Müller-Straße 10, DE72076 Tübingen,
Germany
- School of Pharmacy, Faculty of Health Sciences,
University of Eastern Finland, 70211 Kuopio,
Finland
- Institute of Pharmacy, Pharmaceutical/Medicinal
Chemistry and Tübingen Center for Academic Drug Discovery (TüCAD2),
Eberhard Karls University Tübingen, Auf der
Morgenstelle 8, 72076 Tübingen, Germany
| | - Renata G. Almeida
- Institute of Exact Sciences, Department of Chemistry,
Federal University of Minas Gerais, Belo Horizonte, Minas
Gerais 31270-901, Brazil
| | - Elany B. Silva
- Skaggs School of Pharmacy and Pharmaceutical Sciences,
University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093-0657, United States
| | - Rafael E. O. Rocha
- Department of Biochemistry and Immunology,
Federal University of Minas Gerais, Belo Horizonte, Minas
Gerais 31270-901, Brazil
| | - Joyce C. Oliveira
- Institute of Exact Sciences, Department of Chemistry,
Federal University of Minas Gerais, Belo Horizonte, Minas
Gerais 31270-901, Brazil
| | - Luiza V. Barreto
- Department of Biochemistry and Immunology,
Federal University of Minas Gerais, Belo Horizonte, Minas
Gerais 31270-901, Brazil
| | - Danielle Skinner
- Skaggs School of Pharmacy and Pharmaceutical Sciences,
University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093-0657, United States
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical Sciences,
University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093-0657, United States
- Institute of Organic Chemistry and Biochemistry,
Academy of Sciences of the Czech Republic, 16610 Prague,
Czech Republic
| | - Miriam A. Giardini
- Skaggs School of Pharmacy and Pharmaceutical Sciences,
University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093-0657, United States
| | - Brendon Woodworth
- Department of Medicine, Division of Infectious
Diseases, University of California San Diego, La Jolla,
California 92093, United States
| | - Conner Bardine
- Department of Pharmaceutical Chemistry,
University of California San Francisco, San Francisco,
California 94143, United States
| | - André L. Lourenço
- Department of Pharmaceutical Chemistry,
University of California San Francisco, San Francisco,
California 94143, United States
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry,
University of California San Francisco, San Francisco,
California 94143, United States
| | - Antti Poso
- Department of Oncology and Pneumonology, Internal
Medicine VIII, University Hospital Tübingen,
Otfried-Müller-Straße 10, DE72076 Tübingen,
Germany
- School of Pharmacy, Faculty of Health Sciences,
University of Eastern Finland, 70211 Kuopio,
Finland
| | - Larissa M. Podust
- Skaggs School of Pharmacy and Pharmaceutical Sciences,
University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093-0657, United States
| | - James H. McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences,
University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093-0657, United States
| | - Jair L. Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences,
University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093-0657, United States
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences,
University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093-0657, United States
| | - Eufrânio N. da Silva
Júnior
- Institute of Exact Sciences, Department of Chemistry,
Federal University of Minas Gerais, Belo Horizonte, Minas
Gerais 31270-901, Brazil
| | - Rafaela S. Ferreira
- Department of Biochemistry and Immunology,
Federal University of Minas Gerais, Belo Horizonte, Minas
Gerais 31270-901, Brazil
| |
Collapse
|
4
|
GaCl3 catalyzed the cascade Michael/ketalization of o-hydroxychalcones with indoline-2-thiones: For the construction of indole-annulated 2-oxa-8-thiabicyclo[3.3.1]nonane derivatives. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Basu P, Satam N, Pati S, Suresh A, Namboothiri INN. Reactions of Sulfonylphthalide with Diverse Activated Imines for the Synthesis of Enaminophthalides, Spiro-isoquinolinones, and Homalicine Natural Products. J Org Chem 2022; 88:4038-4051. [PMID: 35797456 DOI: 10.1021/acs.joc.2c00816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The reactivity of the Hauser-Kraus (H-K) donor, 3-sulfonylphthalide, with various activated imines under basic conditions is demonstrated. The reaction of 3-sulfonylphthalide with Boc-protected aldimine provides a rapid access to 1,2-imine adducts and alkylidenephthalides depending upon the stoichiometry of the base. The alkylidenephthalides could be transformed to ketophthalides, a new class of phthalides, on acid hydrolysis, which upon reductive cyclization using Zn/AcOH afforded the natural product homalicine. On the contrary, the Boc-protected isatinimines undergo an efficient H-K annulation to provide spiro-isoquinolinone-oxindoles in excellent yields. However, the corresponding conjugated ketimines afforded Michael adducts, which were converted to the corresponding alkylidenephthalides under TBAF conditions.
Collapse
Affiliation(s)
- Pallabita Basu
- Indian Institute of Technology Bombay, Mumbai 400 076, Maharashtra, India
| | - Nishikant Satam
- Indian Institute of Technology Bombay, Mumbai 400 076, Maharashtra, India
| | - Soumyaranjan Pati
- Indian Institute of Technology Bombay, Mumbai 400 076, Maharashtra, India
| | - Alati Suresh
- Indian Institute of Technology Bombay, Mumbai 400 076, Maharashtra, India
| | | |
Collapse
|
6
|
Santos LH, Kronenberger T, Almeida RG, Silva EB, Rocha REO, Oliveira JC, Barreto LV, Skinner D, Fajtová P, Giardini MA, Woodworth B, Bardine C, Lourenço AL, Craik CS, Poso A, Podust LM, McKerrow JH, Siqueira-Neto JL, O'Donoghue AJ, da Silva Júnior EN, Ferreira RS. Structure-based identification of naphthoquinones and derivatives as novel inhibitors of main protease Mpro and papain-like protease PLpro of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.01.05.475095. [PMID: 35018373 PMCID: PMC8750648 DOI: 10.1101/2022.01.05.475095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The worldwide COVID-19 pandemic caused by the coronavirus SARS-CoV-2 urgently demands novel direct antiviral treatments. The main protease (Mpro) and papain-like protease (PLpro) are attractive drug targets among coronaviruses due to their essential role in processing the polyproteins translated from the viral RNA. In the present work, we virtually screened 688 naphthoquinoidal compounds and derivatives against Mpro of SARS-CoV-2. Twenty-four derivatives were selected and evaluated in biochemical assays against Mpro using a novel fluorogenic substrate. In parallel, these compounds were also assayed with SARS-CoV-2 PLpro. Four compounds inhibited Mpro with half-maximal inhibitory concentration (IC 50 ) values between 0.41 µM and 66 µM. In addition, eight compounds inhibited PLpro with IC 50 ranging from 1.7 µM to 46 µM. Molecular dynamics simulations suggest stable binding modes for Mpro inhibitors with frequent interactions with residues in the S1 and S2 pockets of the active site. For two PLpro inhibitors, interactions occur in the S3 and S4 pockets. In summary, our structure-based computational and biochemical approach identified novel naphthoquinonal scaffolds that can be further explored as SARS-CoV-2 antivirals.
Collapse
|
7
|
Nagaraju S, Sathish K, Kashinath D. Applications of 3,5‐Dialkyl‐4‐nitroisoxazoles and Their Derivatives in Organic Synthesis
#. ChemistrySelect 2021. [DOI: 10.1002/slct.202101719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sakkani Nagaraju
- Department of Chemistry National Institute of Technology Warangal-506 004 India 2677
| | - Kota Sathish
- Department of Chemistry National Institute of Technology Warangal-506 004 India 2677
| | - Dhurke Kashinath
- Department of Chemistry National Institute of Technology Warangal-506 004 India 2677
| |
Collapse
|
8
|
Satam N, Basu P, Pati S, Namboothiri INN. Michael Addition‐Elimination and [4+1] Annulation of Sulfonylphthalide with Hydroxychalcones for the Synthesis of Alkylidenephthalides and Indanediones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Nishikant Satam
- Department of Chemistry Indian Institute of Technology Bombay Mumbai 400076 India
| | - Pallabita Basu
- Department of Chemistry Indian Institute of Technology Bombay Mumbai 400076 India
| | - Soumyaranjan Pati
- Department of Chemistry Indian Institute of Technology Bombay Mumbai 400076 India
| | | |
Collapse
|
9
|
Satham L, Suresh A, Namboothiri INN. Synthesis of Sulfonyloxindoles via Functional Group Exchange Between 3‐Sulfonylphthalide and Isatylidenemalononitrile. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Alati Suresh
- Department of Chemistry Indian Institute of Technology Bombay Mumbai 400 076 India
| | | |
Collapse
|
10
|
Bakthadoss M, Agarwal V. Rhodium-Catalyzed Diastereoselective [3 + 2] Cycloaddition of Carbonyl Ylide: An Access to the Core Ring System of Cordigol and Lophirone H. J Org Chem 2020; 85:15221-15231. [PMID: 33211499 DOI: 10.1021/acs.joc.0c02073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This paper describes a new synthetic strategy for the construction of tricyclic chromeno/quinolino furan frameworks via creation of two new rings and three contiguous stereogenic centers with high diastereoselectivity through a rhodium-catalyzed intramolecular carbonyl ylide cycloaddition reaction for the first time. This protocol allows the synthesis of the core ring system of natural products such as cordigol and lophirone H.
Collapse
Affiliation(s)
| | - Vishal Agarwal
- Department of Chemistry, Pondicherry University, Puducherry 605014, India
| |
Collapse
|
11
|
Kumari R, Singh M. Photocatalytic Reduction of Fluorescent Dyes in Sunlight by Newly Synthesized Spiroindenoquinoxaline Pyrrolizidines. ACS OMEGA 2020; 5:23201-23218. [PMID: 32954171 PMCID: PMC7495801 DOI: 10.1021/acsomega.0c02976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/14/2020] [Indexed: 06/11/2023]
Abstract
Spiroindenoquinoxaline pyrrolizidines (SIQPs)-7-nitro-2'-phenyl-5',6',7',7a'-tetrahydrospiro[indeno[1,2-b]quinoxaline-11,3'-pyrrolizine]-1',1'(2'H)-dicarbonitrile (SIQP I), 2'-(4-cyanophenyl)-7-nitro-5',6',7',7a'-tetrahydrospiro[indeno[1,2-b]quinoxaline-11,3'-pyrrolizine]-1',1'(2'H)-dicarbonitrile (SIQP II), and 2'-(4-methoxyphenyl)-7-nitro-5',6',7',7a'-tetrahydrospiro[indeno[1,2-b]quinoxaline-11,3'-pyrrolizine]-1',1'(2'H)-dicarbonitrile (SIQP III)-have been synthesized through a one-pot cascade Knoevenagel condensation reaction in acetonitrile (ACN) with 91, 98, and 87% yields, respectively. Structures are characterized by 1H NMR and 13C NMR spectroscopy, nuclear Overhauser enhancement spectroscopy (NOESY), Fourier transform infrared (FT-IR) and UV-vis spectroscopy, thermogravimetric analysis (TGA), high-resolution mass spectroscopy (HRTEM), fluorescence and Raman spectroscopy, and energy-dispersive analysis by X-ray (EDX) spectroscopy. SIQPs in ACN photocatalyzed methylene blue (MB) but not phenolphthalein (HIn). SIQPs distinguished the quaternary atoms and dipoles of the fluorescent dye (MB) contrary to the quinonoid HIn structure. In sunlight, SIQPs without electricity input acted as a photonic sensor to detect fluorescent dyes in waste effluents of textile, paper, dyes, and other industries. Activation energy (E a), enthalpy (ΔH), entropy (ΔS), and Gibbs free energy (ΔG) calculated from UV-vis absorption spectra show photocatalytic reduction (PCR) activities in the order SIQP II > III > I. The N-atom of pyrrolizidine and -NO2 of nitro-indenoquinoxaline (NIQ) induced the highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital (LUMO) electrodynamics to enable the SIQPs to catalyze biochemical activities.
Collapse
Affiliation(s)
| | - Man Singh
- . Tel: +91-079-23260210. Fax: +91-079-23260076
| |
Collapse
|
12
|
Wood JM, Satam NS, Almeida RG, Cristani VS, de Lima DP, Dantas-Pereira L, Salomão K, Menna-Barreto RF, Namboothiri IN, Bower JF, da Silva Júnior EN. Strategies towards potent trypanocidal drugs: Application of Rh-catalyzed [2 + 2 + 2] cycloadditions, sulfonyl phthalide annulation and nitroalkene reactions for the synthesis of substituted quinones and their evaluation against Trypanosoma cruzi. Bioorg Med Chem 2020; 28:115565. [DOI: 10.1016/j.bmc.2020.115565] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023]
|
13
|
Kraus GA, Wang S. Annulations with Butenolides and Phthalides: New Entries to Isocoumarins, 3,4-Dihydroisocoumarins, and Benzofurans. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The reactions of the anions of butenolides and substituted phthalides with sorbate esters and mono-epoxy sorbate esters furnish isocoumarins, 3,4-dihydroisocoumarins, and benzofurans. The yields range from 41% to 71%.
Collapse
|
14
|
Pathan SI, Chundawat NS, Chauhan NPS, Singh GP. A review on synthetic approaches of heterocycles via insertion-cyclization reaction. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1712609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | | | | | - Girdhar Pal Singh
- Department of Chemistry, Bhupal Nobles’ University, Udaipur, Rajasthan, India
| |
Collapse
|
15
|
Basu P, Satam N, Namboothiri INN. Synthesis of indenofurans, benzofurans and spiro-lactones via Hauser–Kraus annulation involving 1,6-addition of phthalide to quinone methides. Org Biomol Chem 2020; 18:5677-5687. [DOI: 10.1039/d0ob01115k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Base mediated 1,6-addition–Dieckmann cyclization of phthalide with quinone methide leads to oxygen heterocycles such as indenofurans, spiro-lactones and benzofurans through a cascade of rearrangements involving multiple ring opening and ring closure.
Collapse
Affiliation(s)
- Pallabita Basu
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | - Nishikant Satam
- Department of Chemistry
- Indian Institute of Technology Bombay
- Mumbai 400076
- India
| | | |
Collapse
|