1
|
Xiong B, Yuan M, Shi C, Zhu L, Cao F, Xu W, Ren Y, Liu Y, Tang KW. Recent Advances in the Application of P(III)-Nucleophiles to Create New P-C Bonds through Michaelis-Arbuzov-Type Rearrangement. Top Curr Chem (Cham) 2024; 382:10. [PMID: 38457062 DOI: 10.1007/s41061-024-00456-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
Organophosphorus compounds have long been considered valuable in both organic synthesis and life science. P(III)-nucleophiles, such as phosphites, phosphonites, and diaryl/alkyl phosphines, are particularly noteworthy as phosphorylation reagents for their ability to form new P-C bonds, producing more stable, ecofriendly, and cost-effective organophosphorus compounds. These nucleophiles follow similar phosphorylation routes as in the functionalization of P-H bonds and P-OH bonds. Activation can occur through photocatalytic, electrocatalytic, or thermo-driven reactions, often in coordination with a Michaelis-Arbuzov-trpe rearrangement process, to produce the desired products. As such, this review offers a thorough overview of the phosphorylated transformation and potential mechanisms of P(III)-nucleophiles, specifically focusing on developments since 2010. Notably, this review may provide researchers with valuable insights into designing and synthesizing functionalized organophosphorus compounds from P(III)-nucleophiles, guiding future advancements in both research and practical applications.
Collapse
Affiliation(s)
- Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, People's Republic of China.
| | - Minjing Yuan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, People's Republic of China
| | - Chonghao Shi
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, People's Republic of China
| | - Longzhi Zhu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, People's Republic of China
| | - Fan Cao
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, People's Republic of China
| | - Weifeng Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, People's Republic of China
| | - Yining Ren
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, People's Republic of China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, People's Republic of China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, People's Republic of China
| |
Collapse
|
2
|
Xiong B, Si L, Zhu L, Liu Y, Xu W, Tang KW, Yin SF, Qian PC, Wong WY. Copper-Catalyzed Aerobic Oxidative/Decarboxylative Phosphorylation of Aryl Acrylic Acids with P(III)-Nucleophiles. J Org Chem 2023; 88:12502-12518. [PMID: 37579226 DOI: 10.1021/acs.joc.3c01238] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
A copper-catalyzed aerobic oxidative/decarboxylative phosphorylation of aryl acrylic acids with P(III)-nucleophiles via the Michaelis-Arbuzov rearrangement for the synthesis of β-ketophosphine oxides, β-ketophosphinates, and β-ketophosphonates is reported. The present reaction could be conducted effectively without the use of a ligand and a base. Various kinds of aryl acrylic acids and P(III)-nucleophiles are tolerated in the transformation, generating the desired β-keto-organophosphorus compounds as a valuable class of phosphorus-containing intermediates with good to excellent yields. In addition, the possible mechanism and kinetic studies for the reaction have been explored by step-by-step control experiments and competitive experiments, and the results proved that this transformation may follow second-order chemical kinetics as well as involve a radical process.
Collapse
Affiliation(s)
- Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 00000, P. R. China
| | - Lulu Si
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Longzhi Zhu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Weifeng Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, P. R. China
| | - Shuang-Feng Yin
- Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Peng-Cheng Qian
- Key Laboratory of Environmental Functional Materials Technology and Application of Wenzhou City, Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035 Zhejiang, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong 00000, P. R. China
| |
Collapse
|
3
|
Du P, Yin Y, Shi D, Mao K, Yu Q, Zhao J. Metal-Free Phosphination and Continued Functionalization of Pyridine: A Theoretical Study. Molecules 2022; 27:molecules27175694. [PMID: 36080460 PMCID: PMC9457550 DOI: 10.3390/molecules27175694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022] Open
Abstract
This study investigates the mechanism of metal-free pyridine phosphination with P(OEt)3, PPh3, and PAr2CF3 using density functional theory calculations. The results show that the reaction mechanism and rate-determining step vary depending on the phosphine and additive used. For example, phosphination of pyridine with P(OEt)3 occurs in five stages, and ethyl abstraction is the rate-determining step. Meanwhile, 2-Ph-pyridine phosphination with PPh3 is a four-step reaction with proton abstraction as the rate-limiting step. Energy decomposition analysis of the transition states reveals that steric hindrance in the phosphine molecule plays a key role in the site-selective formation of the phosphonium salt. The mechanism of 2-Ph-pyridine phosphination with PAr2CF3 is similar to that with PPh3, and analyses of the effects of substituents show that electron-withdrawing groups decreased the nucleophilicity of the phosphine, whereas aryl electron-donating groups increased it. Finally, TfO− plays an important role in the C–H fluoroalkylation of pyridine, as it brings weak interactions.
Collapse
Affiliation(s)
- Pan Du
- School of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China
| | - Yuhao Yin
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Dai Shi
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Kexin Mao
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Qianyuan Yu
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Jiyang Zhao
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing 211171, China
- Correspondence:
| |
Collapse
|
4
|
Ma L, Shang S, Yuan H, Zhang Y, Zeng Z, Chen Y. Ag(I)-catalyzed synthesis of (E)-alkenyl phosphonates by oxidative coupling of H-phosphites with β-nitroolefins. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
5
|
Budnikov AS, Krylov IB, Lastovko AV, Paveliev SA, Romanenko AR, Nikishin GI, Terent'ev AO. Stable and reactive diacetyliminoxyl radical in oxidative C-O coupling with β-dicarbonyl compounds and their complexes. Org Biomol Chem 2021; 19:7581-7586. [PMID: 34524335 DOI: 10.1039/d1ob01269j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
As a rule, reactive free radicals used in organic synthesis are too labile to be isolated, whereas persistent radicals are inert and find limited synthetic application. In the present study, the unusually stable diacetyliminoxyl radical was presented as a "golden mean" between transient and stable unreactive radicals. It was successfully employed as a reagent for oxidative C-O coupling with β-dicarbonyl compounds. Using this model radical the catalytic activity of acids, bases and transition metal ions in free-radical coupling was revealed.
Collapse
Affiliation(s)
- Alexander S Budnikov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation.
| | - Igor B Krylov
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation. .,D.I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya sq., Moscow 125047, Russian Federation
| | - Andrey V Lastovko
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation. .,M. V. Lomonosov Moscow State University, 1 Leninskie Gory, Moscow 119991, Russian Federation
| | - Stanislav A Paveliev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation.
| | - Alexander R Romanenko
- D.I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya sq., Moscow 125047, Russian Federation
| | - Gennady I Nikishin
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation.
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation. .,D.I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya sq., Moscow 125047, Russian Federation
| |
Collapse
|
6
|
Electrochemically driven synthesis of phosphorothioates from trialkyl phosphites and aryl thiols. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Zhang H, Yang Z, Zhang H, Han Y, Zhao J, Zhang Y. The Cross‐Dehydrogenative Coupling Reaction of β‐Ketoesters with Quinoxalin‐2(1
H
)‐ones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hong‐Yu Zhang
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| | - Zibing Yang
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| | - Huizhen Zhang
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| | - Ya‐Ping Han
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| | - Jiquan Zhao
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| | - Yuecheng Zhang
- School of Chemical Engineering and Technology Hebei Provincial Key Lab of Green Chemical Technology & High Efficient Energy Saving Tianjin Key Laboratory of Chemical Process Safety Hebei University of Technology Tianjin 300130 P. R. China
| |
Collapse
|
8
|
The surprising diacylation of diethyl (ethoxycarbonylmethyl)phosphonate. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.03.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Huang Y, Chen Q. Recent Advances in C(sp 3)—H Phosphorylation Based on Secondary Phosphine Oxides and Phosphite Esters. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202107044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Wang M, Zhang L, Si W, Song R, Li M, Lv J. Neighboring Thioether Participation in Bioinspired Radical Oxidative C(sp 3)-H α-Oxyamination of Pyruvate Derivatives. Org Lett 2020; 22:8941-8946. [PMID: 33166144 DOI: 10.1021/acs.orglett.0c03320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A bioinspired radical oxidative α-oxyamination of pyruvate with an oxoammonium salt through multiple-site concerted proton-electron transfer process has been developed, which was facilitated by anchoring the mercapoto chains as a "hopping" site at the γ-position of α-keto esters.
Collapse
Affiliation(s)
- Man Wang
- Key Laboratory of Optic-electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Long Zhang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China.,School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong, Sichuan 643000, China
| | - Wen Si
- Key Laboratory of Optic-electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Ran Song
- Key Laboratory of Optic-electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Ming Li
- Key Laboratory of Optic-electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jian Lv
- Key Laboratory of Optic-electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
11
|
Ou Y, Huang Y, Liu Y, Huo Y, Gao Y, Li X, Chen Q. Iron‐Catalyzed and Air‐Mediated C(
sp
3
)−H Phosphorylation of 1,3‐Dicarbonyl Compounds Involving C−C Bond Cleavage. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yingcong Ou
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 People's Republic of China
| | - Yuanting Huang
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 People's Republic of China
| | - Yu Liu
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 People's Republic of China
| | - Yanping Huo
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 People's Republic of China
| | - Yang Gao
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 People's Republic of China
| | - Xianwei Li
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 People's Republic of China
| | - Qian Chen
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 People's Republic of China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province South China University of Technology Guangzhou 510640 People's Republic of China
| |
Collapse
|
12
|
Copper-catalyzed sp3-carbon radical/carbamoyl radical cross coupling: A direct strategy for carbamoylation of 1,3-dicarbonyl compounds. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131342] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Fan J, Zhao Y, Zhang J, Xie M, Zhang Y. Acid-Controlled Access to β-Sulfenyl Ketones and α,β-Disulfonyl Ketones by Pummerer Reaction of β-Keto Sulfones and Sulfoxides. J Org Chem 2020; 85:691-701. [PMID: 31790239 DOI: 10.1021/acs.joc.9b02766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A convenient acid-mediated reaction of β-keto sulfones with sulfoxides under metal-free conditions has been developed, thereby delivering the acid-controlled synthesis of β-sulfenyl ketones and α,β-disulfonyl ketones in good to excellent yields. The mechanism of the transformations has been studied carefully, which suggested the involvement of a radical process in the formation of α,β-disulfonyl ketones.
Collapse
Affiliation(s)
- Jian Fan
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science , Anhui Normal University , Wuhu 241002 , China
| | - Yiming Zhao
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science , Anhui Normal University , Wuhu 241002 , China
| | - Jitan Zhang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science , Anhui Normal University , Wuhu 241002 , China
| | - Meihua Xie
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science , Anhui Normal University , Wuhu 241002 , China
| | - Yuzhong Zhang
- Key Laboratory of Functional Molecular Solids (Ministry of Education), Anhui Key Laboratory of Molecular Based Materials, College of Chemistry and Materials Science , Anhui Normal University , Wuhu 241002 , China
| |
Collapse
|
14
|
Zhang J, Qiao M, Chen L, Dong Y, Jiao C, Liao S, Wu Y. Thiol substrate-promoted dehydrogenative cyclization of arylmethyl thiols with ortho-substituted amines: a universal approach to heteroaromatic compounds. Org Chem Front 2019. [DOI: 10.1039/c9qo00554d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A thiol substrate-promoted one-pot synthesis of a library of heteroaromatic compounds was developed.
Collapse
Affiliation(s)
- Jinli Zhang
- Henan Key Laboratory of Chemical Biology and Organic Chemistry Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
- P.R. China
- College of Chemistry and Molecular Engineering
| | - Mengjun Qiao
- Henan Key Laboratory of Chemical Biology and Organic Chemistry Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Ling Chen
- Henan Key Laboratory of Chemical Biology and Organic Chemistry Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Yibo Dong
- Henan Key Laboratory of Chemical Biology and Organic Chemistry Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Chengkang Jiao
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Shengqi Liao
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Yangjie Wu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
- P.R. China
- College of Chemistry and Molecular Engineering
| |
Collapse
|