1
|
Czajkowska-Szczykowska D, Olchowik-Grabarek E, Sękowski S, Żarkowski J, Morzycki JW. Concise synthesis of E/F ring spiroethers from tigogenin. Carbaanalogs of steroidal sapogenins and their biological activity. J Steroid Biochem Mol Biol 2022; 224:106174. [PMID: 36055516 DOI: 10.1016/j.jsbmb.2022.106174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 10/31/2022]
Abstract
A four-step synthesis of five- and six-membered E/F ring spiroethers from tigogenin has been developed. An efficient strategy that features bis-Grignard reaction of dinorcholanic lactone with appropriate bis(bromomagnesio)alkanes followed by acid-mediated spirocyclization was employed to construct a new class of steroid compounds having E and F ring junction as an oxa-carbacyclic system. The synthesized carbaanalogs interact with liposomes and albumin, and also exhibit antibacterial and antifungal activity, demonstrating their pharmacological potential.
Collapse
Affiliation(s)
- Dorota Czajkowska-Szczykowska
- Natural Products Chemistry Research Group, Department of Organic Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1 K, Białystok 15-245, Poland.
| | - Ewa Olchowik-Grabarek
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, K. Ciołkowskiego 1 J, Białystok 15-245, Poland
| | - Szymon Sękowski
- Laboratory of Molecular Biophysics, Department of Microbiology and Biotechnology, Faculty of Biology, University of Bialystok, K. Ciołkowskiego 1 J, Białystok 15-245, Poland
| | - Jacek Żarkowski
- Natural Products Chemistry Research Group, Department of Organic Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1 K, Białystok 15-245, Poland
| | - Jacek W Morzycki
- Natural Products Chemistry Research Group, Department of Organic Chemistry, Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1 K, Białystok 15-245, Poland
| |
Collapse
|
2
|
Cheng MJ, Zhong LP, Gu CC, Zhu XJ, Chen B, Liu JS, Wang L, Ye WC, Li CC. Asymmetric Total Synthesis of Bufospirostenin A. J Am Chem Soc 2020; 142:12602-12607. [PMID: 32658467 DOI: 10.1021/jacs.0c05479] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The first and asymmetric total synthesis of bioactive bufospirostenin A, an unusual spirostanol with rearranged A/B rings, was accomplished. The synthetically challenging [5-7-6-5] tetracyclic ring system, found in bufospirostenin A and some other natural products, was efficiently constructed by the unique intramolecular rhodium-catalyzed Pauson-Khand reaction of an alkoxyallene-yne. The 11 stereocenters in the final product, including the 10 contiguous stereocenters, were installed diastereoselectively.
Collapse
Affiliation(s)
- Min-Jing Cheng
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China.,Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Li-Ping Zhong
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen-Chen Gu
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xu-Jiang Zhu
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bo Chen
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun-Shan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Lei Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wen-Cai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Chuang-Chuang Li
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Jastrzebska I. Synthesis and application of steroidal 22,16β-carbolactones: A review. J Steroid Biochem Mol Biol 2020; 199:105592. [PMID: 31953168 DOI: 10.1016/j.jsbmb.2020.105592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
In the plant kingdom, steroidal lactones occur as glycosides, compounds consisting of a sugar moiety linked to a steroid aglycone. Steroidal lactones consist of five fused rings, with a total of 22 carbon atoms. Numerous methods for the preparation of steroidal lactones take advantage of the fact that steroid spirostanes may be degraded from six- to a five-rings structure. One of the most striking features common to reactions of steroid sapogenins is the C22-lactone formation. In the review, different methods for the preparation of steroidal lactones are presented with consideration of the structure of starting material. In addition, examples of lactones used in the synthesis of biologically active compounds and their analogues are described.
Collapse
Affiliation(s)
- Izabella Jastrzebska
- Faculty of Chemistry, University of Białystok, ul. Ciołkowskiego 1K, 15-245, Białystok, Poland.
| |
Collapse
|
4
|
Normandin C, Malouin F, Marsault E. Gram-Scale Synthesis of Tomatidine, a Steroid Alkaloid with Antibiotic Properties Against Persistent Forms of Staphylococcus aureus. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Chad Normandin
- Institut de Pharmacologie de Sherbrooke; Université de Sherbrooke; 3001, 12th Avenue N J1H 5N4 Sherbrooke Quebec Canada
| | - François Malouin
- Département de Biologie; Université de Sherbrooke; 2500 Boul. de l'Université J1K 2X9 Sherbrooke Québec Canada
| | - Eric Marsault
- Institut de Pharmacologie de Sherbrooke; Université de Sherbrooke; 3001, 12th Avenue N J1H 5N4 Sherbrooke Quebec Canada
| |
Collapse
|
5
|
Kiełczewska U, Morzycki JW, Rárová L, Wojtkielewicz A. The synthesis of solasodine F-homo-analogues. Org Biomol Chem 2019; 17:9050-9058. [DOI: 10.1039/c9ob01888c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient synthesis of F-homosolasodine analogues containing the 5/7 spirohemiaminal moiety was elaborated. The method benefited from an easy opening of diosgenin F-ring and the introduction of a cyano group in position 26.
Collapse
Affiliation(s)
| | | | - Lucie Rárová
- Laboratory of Growth Regulators
- Faculty of Science
- Palacký University
- and Institute of Experimental Botany of the Czech Academy of Sciences
- CZ-78371 Olomouc
| | | |
Collapse
|