1
|
Spiaggia F, Uccello Barretta G, Iuliano A, Baldassari C, Aiello F, Balzano F. A Squaramide-Based Organocatalyst as a Novel Versatile Chiral Solvating Agent for Carboxylic Acids. Molecules 2024; 29:2389. [PMID: 38792248 PMCID: PMC11123912 DOI: 10.3390/molecules29102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
A squaramide-based organocatalyst for asymmetric Michael reactions has been tested as a chiral solvating agent (CSA) for 26 carboxylic acids and camphorsulfonic acid, encompassing amino acid derivatives, mandelic acid, as well as some of its analogs, propionic acids like profens (ketoprofen and ibuprofen), butanoic acids and others. In many cases remarkably high enantiodifferentiations at 1H, 13C and 19F nuclei were observed. The interaction likely involves a proton transfer from the acidic substrates to the tertiary amine sites of the organocatalyst, thus allowing for pre-solubilization of the organocatalyst (when a chloroform solution of the substrate is employed) or the simultaneous solubilization of both the catalyst and the substrate. DOSY experiments were employed to evaluate whether the catalyst-substrate ionic adduct was a tight one or not. ROESY experiments were employed to investigate the role of the squaramide unit in the adduct formation. A mechanism of interaction was proposed in accordance with the literature data.
Collapse
Affiliation(s)
- Fabio Spiaggia
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy; (A.I.); (C.B.); (F.B.)
| | - Gloria Uccello Barretta
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy; (A.I.); (C.B.); (F.B.)
| | - Anna Iuliano
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy; (A.I.); (C.B.); (F.B.)
| | - Carlo Baldassari
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy; (A.I.); (C.B.); (F.B.)
| | - Federica Aiello
- National Research Council, Institute for Chemical and Physical Processes (CNR-IPCF), Via G. Moruzzi 1, 56124 Pisa, Italy;
| | - Federica Balzano
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy; (A.I.); (C.B.); (F.B.)
| |
Collapse
|
2
|
Mert S, Erdebil Ö. Anion-Binding Properties of Aliphatic Symmetric Squaramide Receptors. ACS OMEGA 2024; 9:8333-8342. [PMID: 38405436 PMCID: PMC10883022 DOI: 10.1021/acsomega.3c09094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/10/2023] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
Squaramides (SQs), which are very popular for their H-bonding ability, have attracted great interest due to their wide range of applications such as asymmetric synthesis, pharmacology, and anion transportation. In this study, aliphatic symmetric SQs based on cis/trans-1,2-diaminocyclohexane (DACH) substituted with cyclic tertiary amines, synthesized in four steps under simple reaction conditions, were investigated for the first time for their ability to bind Cl-, Br-, and I- anions. The changes in cis/trans geometric isomers and the cyclic ring (pyrrolidine vs piperidine) were found to have a combined effect on the degree of anion binding. The spectroscopic titrations of the SQs with TBA-Cl, TBA-Br, and TBA-I in the range of 0.2 to 20.0 equiv were monitored by 1H NMR, and the analyses of the magnitude of chemical shift differences in the NH peaks of the SQs in course of titration were performed by DynaFit and BindFit programs for the calculation of their Ka values. All symmetric SQs I-IV were found to selectively bind Cl- anion more strongly than Br- anion to varying degrees depending on the SQ derivatives. Especially, SQ IV, which has a symmetric trans-DACH and a pyrrolidine ring, was found to have the highest Cl- anion-binding ability compared to the other SQs. However, the SQs did not show any change in the chemical shift of the NH proton in 1H NMR upon successive addition of TBA-I, indicating that they do not interact with I- anion. The stoichiometries of the complexation behavior of SQs I-IV toward Cl- and Br- anions were also analyzed by Job plots.
Collapse
Affiliation(s)
- Serap Mert
- Department
of Chemistry and Chemical Processing Technology, Kocaeli University, Kocaeli 41140, Turkey
- Department
of Polymer Science and Technology, Kocaeli
University, Kocaeli 41001, Turkey
- Center
for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli 41001, Turkey
| | - Özden Erdebil
- Department
of Polymer Science and Technology, Kocaeli
University, Kocaeli 41001, Turkey
| |
Collapse
|
3
|
Recent Advances in Greener Asymmetric Organocatalysis Using Bio-Based Solvents. Catalysts 2023. [DOI: 10.3390/catal13030553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Efficient synthetic methods that avoid the extensive use of hazardous reagents and solvents, as well as harsh reaction conditions, have become paramount in the field of organic synthesis. Organocatalysis is notably one of the best tools in building chemical bonds between carbons and carbon-heteroatoms; however, most examples still employ toxic volatile organic solvents. Although a portfolio of greener solvents is now commercially available, only ethyl alcohol, ethyl acetate, 2-methyltetrahydrofuran, supercritical carbon dioxide, ethyl lactate, and diethyl carbonate have been explored with chiral organocatalysts. In this review, the application of these bio-based solvents in asymmetric organocatalytic methods reported in the last decade is discussed, highlighting the proposed mechanism pathway for the transformations.
Collapse
|
4
|
Asymmetric organocatalysis: from a breakthrough methodology to sustainable catalysts and processes. Russ Chem Bull 2023. [DOI: 10.1007/s11172-023-3713-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
5
|
Synthesis and cytotoxic activity of new hexaazadibenzotetracenes derived from trans-1,2-diaminocyclohexane. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.01.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
6
|
Lopat’eva ER, Krylov IB, Lapshin DA, Terent’ev AO. Redox-active molecules as organocatalysts for selective oxidative transformations - an unperceived organocatalysis field. Beilstein J Org Chem 2022; 18:1672-1695. [PMID: 36570566 PMCID: PMC9749543 DOI: 10.3762/bjoc.18.179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Organocatalysis is widely recognized as a key synthetic methodology in organic chemistry. It allows chemists to avoid the use of precious and (or) toxic metals by taking advantage of the catalytic activity of small and synthetically available molecules. Today, the term organocatalysis is mainly associated with redox-neutral asymmetric catalysis of C-C bond-forming processes, such as aldol reactions, Michael reactions, cycloaddition reactions, etc. Organophotoredox catalysis has emerged recently as another important catalysis type which has gained much attention and has been quite well-reviewed. At the same time, there are a significant number of other processes, especially oxidative, catalyzed by redox-active organic molecules in the ground state (without light excitation). Unfortunately, many of such processes are not associated in the literature with the organocatalysis field and thus many achievements are not fully consolidated and systematized. The present article is aimed at overviewing the current state-of-art and perspectives of oxidative organocatalysis by redox-active molecules with the emphasis on challenging chemo-, regio- and stereoselective CH-functionalization processes. The catalytic systems based on N-oxyl radicals, amines, thiols, oxaziridines, ketone/peroxide, quinones, and iodine(I/III) compounds are the most developed catalyst types which are covered here.
Collapse
Affiliation(s)
- Elena R Lopat’eva
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Igor B Krylov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Dmitry A Lapshin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| | - Alexander O Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow, 119991, Russia
| |
Collapse
|
7
|
Mitra S, Sarkar R, Chakrabarty A, Mukherjee S. Hydroxy-directed iridium-catalyzed enantioselective formal β-C(sp 2)-H allylic alkylation of α,β-unsaturated carbonyls. Chem Sci 2022; 13:12491-12497. [PMID: 36382287 PMCID: PMC9629034 DOI: 10.1039/d2sc03966d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/12/2022] [Indexed: 02/12/2024] Open
Abstract
Hydroxy-directed iridium-catalyzed enantioselective formal β-C(sp2)-H allylic alkylation of kojic acid and structurally related α,β-unsaturated carbonyl compounds is developed. This reaction, catalyzed by an Ir(i)/(P,olefin) complex, utilizes the nucleophilic character of α-hydroxy α,β-unsaturated carbonyls, to introduce an allyl group at its β-position in a branched-selective manner in good to excellent yield with uniformly high enantioselectivity (up to >99.9 : 0.1 er). To the best of our knowledge, this report represents the first example of the use of kojic acid in a transition metal catalyzed highly enantioselective transformation.
Collapse
Affiliation(s)
- Sankash Mitra
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560 012 India +91-80-2360-0529 +91-80-2293-2850
| | - Rahul Sarkar
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560 012 India +91-80-2360-0529 +91-80-2293-2850
| | - Aditya Chakrabarty
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560 012 India +91-80-2360-0529 +91-80-2293-2850
| | - Santanu Mukherjee
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560 012 India +91-80-2360-0529 +91-80-2293-2850
| |
Collapse
|
8
|
Popova EA, Pronina YA, Davtian AV, Nepochatyi GD, Petrov ML, Boitsov VM, Stepakov AV. Squaramide-Based Catalysts in Organic Synthesis (A Review). RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s107036322203001x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
9
|
Kodama K, Maruyama K, Hirose T. Chiral 1,3-aminosquaramides derived from cis-2-benzamidocyclohexanecarboxylic acid as organocatalysts for asymmetric Michael addition reactions. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Kovalevsky RA, Smirnov MV, Kucherenko AS, Bykova KA, Shikina EV, Zlotin SG. Organocatalytic Asymmetric Double Addition of Kojic Acids to 2‐Nitroallylic Carbonates. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Ruslan A. Kovalevsky
- I.N.Nazarov Laboratory of Fine Organic Synthesis t N.D. Zelinsky Institute of Organic Chemistry 47 Leninsky Prospect 119991 Moscow Russian Federation
- Department of Chemistry M.V. Lomonosov Moscow State University Leninskie gory 1–3 119234 Moscow Russian Federation
| | - Maxim V. Smirnov
- I.N.Nazarov Laboratory of Fine Organic Synthesis t N.D. Zelinsky Institute of Organic Chemistry 47 Leninsky Prospect 119991 Moscow Russian Federation
- Department of Chemistry M.V. Lomonosov Moscow State University Leninskie gory 1–3 119234 Moscow Russian Federation
| | - Alexander S. Kucherenko
- I.N.Nazarov Laboratory of Fine Organic Synthesis t N.D. Zelinsky Institute of Organic Chemistry 47 Leninsky Prospect 119991 Moscow Russian Federation
| | - Kseniya A. Bykova
- I.N.Nazarov Laboratory of Fine Organic Synthesis t N.D. Zelinsky Institute of Organic Chemistry 47 Leninsky Prospect 119991 Moscow Russian Federation
| | - Elizaveta V. Shikina
- I.N.Nazarov Laboratory of Fine Organic Synthesis t N.D. Zelinsky Institute of Organic Chemistry 47 Leninsky Prospect 119991 Moscow Russian Federation
- Faculty of Material sciences M.V. Lomonosov Moscow State University Leninskie gory 1–3 119234 Moscow Russian Federation
| | - Sergei G. Zlotin
- I.N.Nazarov Laboratory of Fine Organic Synthesis t N.D. Zelinsky Institute of Organic Chemistry 47 Leninsky Prospect 119991 Moscow Russian Federation
| |
Collapse
|
11
|
Kar S, Sanderson H, Roy K, Benfenati E, Leszczynski J. Green Chemistry in the Synthesis of Pharmaceuticals. Chem Rev 2021; 122:3637-3710. [PMID: 34910451 DOI: 10.1021/acs.chemrev.1c00631] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The principles of green chemistry (GC) can be comprehensively implemented in green synthesis of pharmaceuticals by choosing no solvents or green solvents (preferably water), alternative reaction media, and consideration of one-pot synthesis, multicomponent reactions (MCRs), continuous processing, and process intensification approaches for atom economy and final waste reduction. The GC's execution in green synthesis can be performed using a holistic design of the active pharmaceutical ingredient's (API) life cycle, minimizing hazards and pollution, and capitalizing the resource efficiency in the synthesis technique. Thus, the presented review accounts for the comprehensive exploration of GC's principles and metrics, an appropriate implication of those ideas in each step of the reaction schemes, from raw material to an intermediate to the final product's synthesis, and the final execution of the synthesis into scalable industry-based production. For real-life examples, we have discussed the synthesis of a series of established generic pharmaceuticals, starting with the raw materials, and the intermediates of the corresponding pharmaceuticals. Researchers and industries have thoughtfully instigated a green synthesis process to control the atom economy and waste reduction to protect the environment. We have extensively discussed significant reactions relevant for green synthesis, one-pot cascade synthesis, MCRs, continuous processing, and process intensification, which may contribute to the future of green and sustainable synthesis of APIs.
Collapse
Affiliation(s)
- Supratik Kar
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| | - Hans Sanderson
- Department of Environmental Science, Section for Toxicology and Chemistry, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.,Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 19, 20156 Milano, Italy
| | - Emilio Benfenati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 19, 20156 Milano, Italy
| | - Jerzy Leszczynski
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| |
Collapse
|
12
|
Ma Z, Liu Z, Wang C, Chen X, Tao J, Lv Q. A novel isosteviol-based bifunctional squaramide organocatalyst for enantioselective Michael addition of acetylacetone to nitroolefins. Chirality 2021; 34:77-85. [PMID: 34747045 DOI: 10.1002/chir.23391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/20/2021] [Accepted: 10/23/2021] [Indexed: 11/09/2022]
Abstract
Chiral amine-squaramide is a kind of effective hydrogen bond donor bifunctional catalyst to promote many asymmetric transformations. In this paper, novel chiral tertiary amine-squaramide derived from the natural product of the stevioside was developed and applied into the asymmetric Michael addition of acetylacetone to nitroolefins. This asymmetric reaction performed well, and a series of enantiomerically enriched compounds were obtained in high yields (up to 96%) with excellent enantioselectivities (up to 99% ee).
Collapse
Affiliation(s)
- Zhiwei Ma
- Faculty of Science, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Zhijing Liu
- Faculty of Science, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Chuanchuan Wang
- Faculty of Science, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Xiaopei Chen
- Faculty of Science, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Jingchao Tao
- College of Chemistry, Zhengzhou University, Zhengzhou, China
| | - Quanjian Lv
- Faculty of Science, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| |
Collapse
|
13
|
Kovalevsky RA, Kucherenko AS, Korlyukov AA, Zlotin SG. Asymmetric Conjugate Addition of 3‐Hydroxychromen‐4‐Ones to Electron‐Deficient Olefins Catalyzed by Recyclable C
2
‐Symmetric Squaramide. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ruslan A. Kovalevsky
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky Prospect 119991 Moscow Russian Federation
- M.V. Lomonosov Moscow State University Department of Chemistry Leninskie gory 1–3 119234 Moscow Russian Federation
| | - Alexander S. Kucherenko
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky Prospect 119991 Moscow Russian Federation
| | - Alexander A. Korlyukov
- A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences 119991 Moscow Russian Federation
| | - Sergei G. Zlotin
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences 47 Leninsky Prospect 119991 Moscow Russian Federation
| |
Collapse
|
14
|
Shekurov RP, Gilmanova LH, Zagidullin AA, Miluykov VA. 2-[1-(Dimethylamino)ethyl]ferrocenylphosphinic acid as an organocatalyst of Michael and Friedel—Crafts reactions. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3233-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Non-Covalent Interactions in Enantioselective Organocatalysis: Theoretical and Mechanistic Studies of Reactions Mediated by Dual H-Bond Donors, Bifunctional Squaramides, Thioureas and Related Catalysts. Catalysts 2021. [DOI: 10.3390/catal11050569] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chiral bifunctional dual H-bond donor catalysts have become one of the pillars of organocatalysis. They include squaramide, thiosquaramide, thiourea, urea, and even selenourea-based catalysts combined with chiral amines, cinchona alkaloids, sulfides, phosphines and more. They can promote several types of reactions affording products in very high yields and excellent stereoselectivities in many cases: conjugate additions, cycloadditions, the aldol and Henry reactions, the Morita–Baylis–Hilman reaction, even cascade reactions, among others. The desire to understand mechanisms and the quest for the origins of stereoselectivity, in attempts to find guidelines for developing more efficient catalysts for new transformations, has promoted many mechanistic and theoretical studies. In this review, we survey the literature published in this area since 2015.
Collapse
|
16
|
Das T, Mohapatra S, Mishra NP, Nayak S, Raiguru BP. Recent Advances in Organocatalytic Asymmetric Michael Addition Reactions to α, β‐Unsaturated Nitroolefins. ChemistrySelect 2021. [DOI: 10.1002/slct.202100679] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tapaswini Das
- Organic Synthesis Laboratory, Department of Chemistry Ravenshaw University Cuttack 753003, Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory, Department of Chemistry Ravenshaw University Cuttack 753003, Odisha India
| | - Nilima P. Mishra
- Organic Synthesis Laboratory, Department of Chemistry Ravenshaw University Cuttack 753003, Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory, Department of Chemistry Ravenshaw University Cuttack 753003, Odisha India
| | - Bishnu P. Raiguru
- Organic Synthesis Laboratory, Department of Chemistry Ravenshaw University Cuttack 753003, Odisha India
| |
Collapse
|
17
|
Kostenko AA, Bykova KA, Kucherenko AS, Komogortsev AN, Lichitsky BV, Zlotin SG. 2-Nitroallyl carbonate-based green bifunctional reagents for catalytic asymmetric annulation reactions. Org Biomol Chem 2021; 19:1780-1786. [PMID: 33543186 DOI: 10.1039/d0ob02283g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
2-Nitroallylic carbonates, a new class of "green" 1,3-bielectrophilic reagents for organic synthesis and catalysis, have been prepared. The bifunctional tertiary amine-catalyzed asymmetric [3 + 3] annulations of cyclic enols with these reagents occur much faster than corresponding reactions with 2-nitroallylic esters and produce no acidic by-products poisoning the catalyst. Furthermore, 2-nitroallylic carbonates enable highly enantioselective one-pot synthesis of a variety of fused dihydropyrane derivatives from available precursors bearing pharmacophoric fragments.
Collapse
Affiliation(s)
- Alexey A Kostenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991, Moscow, Russian Federation.
| | - Kseniya A Bykova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991, Moscow, Russian Federation.
| | - Alexander S Kucherenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991, Moscow, Russian Federation.
| | - Andrey N Komogortsev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991, Moscow, Russian Federation.
| | - Boris V Lichitsky
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991, Moscow, Russian Federation.
| | - Sergei G Zlotin
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, 119991, Moscow, Russian Federation.
| |
Collapse
|
18
|
Krištofíková D, Modrocká V, Mečiarová M, Šebesta R. Green Asymmetric Organocatalysis. CHEMSUSCHEM 2020; 13:2828-2858. [PMID: 32141177 DOI: 10.1002/cssc.202000137] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/05/2020] [Indexed: 06/10/2023]
Abstract
Asymmetric organocatalysis is becoming one of the main tools for the synthesis of chiral compounds that are needed as medicines, crop protection agents, and other bioactive molecules. It can be effectively combined with various green chemistry methodologies. Intensification techniques, such as ball milling, flow, high pressure, or light, bring not only higher yields, faster reactions, and easier product isolation, but also new reactivities. More sustainable reaction media, such as ionic liquids, deep eutectic solvents, green solvent alternatives, and water, also considerably enhance the sustainability profile of many organocatalytic reactions.
Collapse
Affiliation(s)
- Dominika Krištofíková
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina, Ilkovicova 6, 842 15, Bratislava, Slovakia
| | - Viktória Modrocká
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina, Ilkovicova 6, 842 15, Bratislava, Slovakia
| | - Mária Mečiarová
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina, Ilkovicova 6, 842 15, Bratislava, Slovakia
| | - Radovan Šebesta
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynska dolina, Ilkovicova 6, 842 15, Bratislava, Slovakia
| |
Collapse
|
19
|
Zhu J, Zhu L, Wu Y, Cheng L, Wang H, Sun X, Shen J, Zhou Y, Ke Y. A novel C 2 symmetric chiral stationary phase with N-[(4-Methylphenyl)sulfonyl]-l-leucine as chiral side chains. J Sep Sci 2020; 43:2338-2348. [PMID: 32216077 DOI: 10.1002/jssc.202000163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 11/09/2022]
Abstract
In this study, a series of chiral stationary phases based on N-[(4-methylphenyl)sulfonyl]-l-leucine amide, whose enantiorecognition property has never been studied, were synthesized. Their enantioseparation abilities were chromatographically evaluated by 67 enantiomers. The chiral stationary phase derived from N-[(4-methylphenyl)sulfonyl]-l-leucine showed much better enantioselectivities than that based on N-(4-methylbenzoyl)-l-leucine amide. The construction of C2 symmetric chiral structure greatly improved the enantiorecognition performance of the stationary phase. The C2 symmetric chiral stationary phase exhibited superior enantioresolutions to other chiral stationary phases for most of the chiral analytes, especially for the chiral analytes with C2 symmetric structures. By comparing the enantioseparations of the enantiomers with similar structures, the importance of hydrogen bond interaction, π-π interaction, and steric hindrance on enantiorecognition was elucidated. The enantiorecognition mechanism of trans-N,N'-(1,2-diphenyl-1,2-ethanediyl)bis-acetamide, which had an excellent separation factor on the C2 symmetric chiral stationary phase, was investigated by 1 H-NMR spectroscopy and 2D 1 H-1 H nuclear overhauser enhancement spectroscopy.
Collapse
Affiliation(s)
- Junchen Zhu
- Engineering Research Center of Pharmaceutical Process Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| | - Lunan Zhu
- Engineering Research Center of Pharmaceutical Process Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| | - Yaling Wu
- Engineering Research Center of Pharmaceutical Process Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| | - Lingping Cheng
- Engineering Research Center of Pharmaceutical Process Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| | - Huiying Wang
- Engineering Research Center of Pharmaceutical Process Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| | - Xiaotong Sun
- Engineering Research Center of Pharmaceutical Process Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| | - Jiawei Shen
- Engineering Research Center of Pharmaceutical Process Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| | - Yang Zhou
- Engineering Research Center of Pharmaceutical Process Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| | - Yanxiong Ke
- Engineering Research Center of Pharmaceutical Process Chemistry, East China University of Science and Technology, Shanghai, P. R. China
| |
Collapse
|