1
|
Zhang M, He P, Li Y. Light-initiated 1,3-dipolar cycloaddition between dehydroalanines and tetrazoles: application to late-stage peptide and protein modifications. Chem Sci 2023; 14:9418-9426. [PMID: 37712045 PMCID: PMC10498508 DOI: 10.1039/d3sc02818f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/18/2023] [Indexed: 09/16/2023] Open
Abstract
As an easily introduced noncoded amino acid with unique electrophilicity distinct from the 20 natural amino acids, dehydroalanine (Dha) is not only a precise protein post-translational modification (PTM) insertion tool, but also a promising multifunctional labelling site for peptides and proteins. However, achieving a balance between the reaction rate and mild reaction conditions has been a major challenge in developing novel Dha-modified strategies. Rapid, efficient, and mild Dha modification strategies are highly desired. Additionally, catalyst-free photocontrollable reactions for Dha-containing peptide and protein modification have yet to be developed. Here, we report a photoinitiated 1,3-dipolar cycloaddition reaction between Dha and 2,5-diaryl tetrazoles. Under low-power UV lamp irradiation, this reaction is completed within minutes without catalysis, resulting in a fluorescent pyrazoline-modified peptide or protein with excellent chemoselectivity for Dha residues. Notably, this reaction exhibits complete site-specificity in the modification of thiostrepton, a natural antimicrobial peptide containing multiple Dha residues (Dha3, Dha16, and Dha17), within 20 minutes in high yields. This is currently the fastest reaction for modifying the Dha residue in thiostrepton with clear site-specificity towards Dha16. This photoinitiated reaction also provides a chemoselective strategy for precise functionalization of proteins. Additionally, the rapidity and efficiency of the reaction minimize UV light damage to the biological reaction system. Combined with fluorogenic properties, this photo-controllable methodology can be applied to live cell imaging, further broadening the application scope of the Dha modification methodology.
Collapse
Affiliation(s)
- Mengqian Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
| | - Peiyang He
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
| | - Yanmei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
- Beijing Institute for Brain Disorders Beijing 100069 P. R. China
- Center for Synthetic and Systems Biology, Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
2
|
Gary S, Bloom S. Peptide Carbocycles: From -SS- to -CC- via a Late-Stage "Snip-and-Stitch". ACS CENTRAL SCIENCE 2022; 8:1537-1547. [PMID: 36439308 PMCID: PMC9686213 DOI: 10.1021/acscentsci.2c00456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Indexed: 05/28/2023]
Abstract
One way to improve the therapeutic potential of peptides is through cyclization. This is commonly done using a disulfide bond between two cysteine residues in the peptide. However, disulfide bonds are susceptible to reductive cleavage, and this can deactivate the peptide and endanger endogenous proteins through covalent modification. Substituting disulfide bonds with more chemically robust carbon-based linkers has proven to be an effective strategy to better develop cyclic peptides as drugs, but finding the optimal carbon replacement is synthetically laborious. We report a new late-stage platform wherein a single disulfide bond in a cyclic peptide can serve as the progenitor for any number of new carbon-rich groups, derived from organodiiodides, using a Zn:Cu couple and a hydrosilane. We show that this platform can furnish entirely new carbocyclic scaffolds with enhanced permeability and structural integrity and that the stereochemistry of the new cycles can be biased by a judicious choice in silane.
Collapse
Affiliation(s)
- Samuel Gary
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas66045, United States
| | - Steven Bloom
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas66045, United States
| |
Collapse
|
3
|
Zhang M, He P, Li Y. Contemporary Approaches to α,β-Dehydroamino Acid Chemical Modifications. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1307-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
4
|
Immel JR, Chilamari M, Bloom S. Combining flavin photocatalysis with parallel synthesis: a general platform to optimize peptides with non-proteinogenic amino acids. Chem Sci 2021; 12:10083-10091. [PMID: 34377401 PMCID: PMC8317666 DOI: 10.1039/d1sc02562g] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Most peptide drugs contain non-proteinogenic amino acids (NPAAs), born out through extensive structure-activity relationship (SAR) studies using solid-phase peptide synthesis (SPPS). Synthetically laborious and expensive to manufacture, NPAAs also can have poor coupling efficiencies allowing only a small fraction to be sampled by conventional SPPS. To gain general access to NPAA-containing peptides, we developed a first-generation platform that merges contemporary flavin photocatalysis with parallel synthesis to simultaneously make, purify, quantify, and even test up to 96 single-NPAA peptide variants via the unique combination of boronic acids and a dehydroalanine residue in a peptide. We showcase the power of our newly minted platform to introduce NPAAs of diverse chemotypes-aliphatic, aromatic, heteroaromatic-directly into peptides, including 15 entirely new residues, and to evolve a simple proteinogenic peptide into an unnatural inhibitor of thrombin by non-classical peptide SAR.
Collapse
Affiliation(s)
- Jacob R Immel
- Department of Medicinal Chemistry, The University of Kansas Integrated Science Building Lawrence KS 66045 USA
| | - Maheshwerreddy Chilamari
- Department of Medicinal Chemistry, The University of Kansas Integrated Science Building Lawrence KS 66045 USA
| | - Steven Bloom
- Department of Medicinal Chemistry, The University of Kansas Integrated Science Building Lawrence KS 66045 USA
| |
Collapse
|
5
|
Gugkaeva ZT, Smol'yakov AF, Maleev VI, Larionov VA. A general asymmetric synthesis of artificial aliphatic and perfluoroalkylated α-amino acids by Luche's cross-electrophile coupling reaction. Org Biomol Chem 2021; 19:5327-5332. [PMID: 34042928 DOI: 10.1039/d1ob00805f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aliphatic artificial α-amino acids (α-AAs) have attracted great interest in biochemistry and pharmacy. In this context, we developed a promising practical protocol for the asymmetric synthesis of these α-AAs through the selective and efficient intermolecular cross-electrophile coupling of Belokon's chiral dehydroalanine Ni(ii) complex with different alkyl and perfluoroalkyl iodides mediated by a dual Zn/Cu system. The reaction afforded diastereomeric complexes with dr up to 21.3 : 1 in 24-95% yields (19 examples). Exemplarily, three enantiomerically pure aliphatic α-AAs were obtained through acidic decomposition of (S,S)-diastereomers of Ni(ii) complexes. Importantly, the chiral auxiliary ligand (S)-BPB ((S)-2-(N-benzylprolyl)aminobenzophenone) was easily recycled by simple filtration after acidic complex decomposition and reused for the synthesis of the initial dehydroalanine Ni(ii) complex.
Collapse
Affiliation(s)
- Zalina T Gugkaeva
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation.
| | - Alexander F Smol'yakov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation. and Plekhanov Russian University of Economics, Stremyanny per. 36, 117997 Moscow, Russian Federation
| | - Victor I Maleev
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation.
| | - Vladimir A Larionov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavilov Str. 28, 119991 Moscow, Russian Federation. and Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Str. 6, 117198 Moscow, Russian Federation
| |
Collapse
|
6
|
Wan Y, Zhu J, Yuan Q, Wang W, Zhang Y. Synthesis of β-Silyl α-Amino Acids via Visible-Light-Mediated Hydrosilylation. Org Lett 2021; 23:1406-1410. [PMID: 33502205 DOI: 10.1021/acs.orglett.1c00065] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An expedient synthesis of β-silyl α-amino acids is reported via the application of visible-light-mediated hydrosilylation. The reaction utilizes readily accessible and structurally diverse hydrosilanes to provide radicals for conjugate addition to dehydroalanine ester and analogues. Notably, the use of chiral methyleneoxazolidinone as the substrate and chiral inducer enabled the highly stereoselective synthesis. Furthermore, the reaction could also be performed in a continuous flow fashion and scaled up to the gram scale.
Collapse
Affiliation(s)
- Yi Wan
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jiajie Zhu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Qiyang Yuan
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Wei Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China.,Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, Arizona 85721-0207, United States
| | - Yongqiang Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
7
|
Chu Z, Tong R, Yang Y, Song X, Hu TB, Fan Y, Zhao C, Gao L, Song Z. Diverse synthesis of the C ring fragment of bryostatins via Zn/Cu-promoted conjugate addition of α-hydroxy iodide with enone. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
de Vries RH, Roelfes G. Cu(II)-Catalysed β-silylation of dehydroalanine residues in peptides and proteins. Chem Commun (Camb) 2020; 56:11058-11061. [PMID: 32812557 DOI: 10.1039/d0cc05026a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report the efficient and selective Cu(ii)-catalysed β-silylation of naturally occurring dehydroalanine (Dha) residues in various ribosomally synthesized and post-translationally modified peptides (RiPPs). The method is also applicable to proteins, as was shown by the modification of a Dha residue that was chemically introduced into Small Ubiquitin-like Modifier (SUMO).
Collapse
Affiliation(s)
- Reinder H de Vries
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Gerard Roelfes
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
9
|
Zhang O, Schubert JW. Derivatization of Amino Acids and Peptides via Photoredox-Mediated Conjugate Addition. J Org Chem 2020; 85:6225-6232. [PMID: 32268730 DOI: 10.1021/acs.joc.0c00635] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Unnatural amino acids are key building blocks in therapeutically relevant peptides. Thus, the development of novel methods to increase the structural diversity of the unnatural amino acid pool is needed. Herein, a photoredox-mediated decarboxylative radical conjugate addition to dehydroalanine derivatives is disclosed. Mild, robust, and general conditions were identified and applied to the diastereoselective synthesis of unnatural amino acids and the late-stage derivatization of a tripeptide.
Collapse
Affiliation(s)
- Olivia Zhang
- Department of Discovery Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Jeffrey W Schubert
- Department of Discovery Chemistry, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
10
|
Constantin T, Zanini M, Regni A, Sheikh NS, Juliá F, Leonori D. Aminoalkyl radicals as halogen-atom transfer agents for activation of alkyl and aryl halides. Science 2020; 367:1021-1026. [DOI: 10.1126/science.aba2419] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/31/2020] [Indexed: 12/17/2022]
Abstract
Organic halides are important building blocks in synthesis, but their use in (photo)redox chemistry is limited by their low reduction potentials. Halogen-atom transfer remains the most reliable approach to exploit these substrates in radical processes despite its requirement for hazardous reagents and initiators such as tributyltin hydride. In this study, we demonstrate that α-aminoalkyl radicals, easily accessible from simple amines, promote the homolytic activation of carbon-halogen bonds with a reactivity profile mirroring that of classical tin radicals. This strategy conveniently engages alkyl and aryl halides in a wide range of redox transformations to construct sp3-sp3, sp3-sp2, and sp2-sp2 carbon-carbon bonds under mild conditions with high chemoselectivity.
Collapse
Affiliation(s)
| | - Margherita Zanini
- Department of Chemistry, University of Manchester, Manchester M13 9PL, UK
| | - Alessio Regni
- Department of Chemistry, University of Manchester, Manchester M13 9PL, UK
| | - Nadeem S. Sheikh
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Fabio Juliá
- Department of Chemistry, University of Manchester, Manchester M13 9PL, UK
| | - Daniele Leonori
- Department of Chemistry, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
11
|
Medrano-Uribe K, Miranda LD. Photo-induced coupling of tertiary amines with Ugi-derived dehydroalanines as a practical device in the synthesis to 2,4-diaminobutyric acid derivatives. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|