1
|
Yu J, Yan X, Chen Y, Guo K, Wang S, Ma X. Pd-Catalyzed Aerobic Synthesis of Allylic Sulfones from Allylic Alcohols and Sulfonyl Hydrazines in Water. J Org Chem 2024; 89:10344-10348. [PMID: 38984991 DOI: 10.1021/acs.joc.4c00882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
A mild and green synthesis of allylic sulfones from allylic alcohols and sulfonyl hydrazines was developed in water media. The simple and commercially available Pd(PPh3)4 is used as the best catalyst, and the reaction can proceed smoothly at 40 °C under air. This new method does not require the common nitrogen protection and organic media, and can be readily scaled up in gram scale, showing the good practicality value.
Collapse
Affiliation(s)
- Jing Yu
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Xiaoyu Yan
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Yuying Chen
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Kexin Guo
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Shuo Wang
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Xiantao Ma
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China
| |
Collapse
|
2
|
Ma X, Zhu Y, Yu J, Yan R, Xie X, Huang L, Wang Q, Chang XP, Xu Q. Water oxidation by Brønsted acid-catalyzed in situ generated thiol cation: dual function of the acid catalyst leading to transition metal-free substitution and addition reactions of S-S bonds. Org Chem Front 2022. [DOI: 10.1039/d2qo00169a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented water oxidation reaction by a small organic molecule, i.e., the thiol cation generated in situ by Brønsted acid-catalyzed heterolytic cleavage of S-S bond of a disulfide, is observed...
Collapse
|
3
|
Ma X, Zhu Y, Yu J, Zhao G, Duanmu J, Yuan Y, Chang XP, Xu D, Zhou Q. Unprecedented observation and characterization of sulfur-centred bifurcated hydrogen bonds. Phys Chem Chem Phys 2021; 23:26519-26523. [PMID: 34807205 DOI: 10.1039/d1cp04601b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Owing to the small electronegativity of the sulfur atom, it is commonly supposed that at most one weak H-bond can be formed between a sulfur atom and an H-bond donor. In this paper, an unprecedented 2 : 1 binding species generated from two molecules of phenol and a molecule of thioether was observed and characterized by various nuclear magnetic resonance (NMR) techniques, Fourier transform-infrared (FT-IR) techniques and density functional theory (DFT) calculations, revealing the formation of sulfur-centred O-H⋯S⋯H-O bifurcated H-bonds. This work may provide a simple and efficient method for the quantitative analysis of weak H-bonds between small organic molecules.
Collapse
Affiliation(s)
- Xiantao Ma
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Yingying Zhu
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Jing Yu
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Geng Zhao
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Jiaxin Duanmu
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Yiyun Yuan
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Xue-Ping Chang
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Dongli Xu
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China.
| |
Collapse
|
4
|
Nakayama T, Hikawa H, Kikkawa S, Azumaya I. Water-promoted dehydrative coupling of 2-aminopyridines in heptane via a borrowing hydrogen strategy. RSC Adv 2021; 11:23144-23150. [PMID: 35480450 PMCID: PMC9034306 DOI: 10.1039/d1ra04118e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/23/2021] [Indexed: 11/23/2022] Open
Abstract
A synthetic method for dehydrative N-benzylation promoted by water molecules in heptane using a π-benzylpalladium system has been developed. The presence of water significantly accelerates carbon–nitrogen bond formation, which is accomplished in an atom-economical process to afford the corresponding N-monobenzylated products. A crossover experiment afforded H/D scrambled products, which is consistent with a borrowing hydrogen mechanism. Kinetic isotope effect measurements revealed that benzylic carbon–hydrogen bond cleavage was the rate-determining step. We describe a novel strategy for the water-promoted dehydrative coupling reaction in heptane, which offers a sustainable direct amination of alcohols.![]()
Collapse
Affiliation(s)
- Taku Nakayama
- Faculty of Pharmaceutical Sciences, Toho University 2-2-1 Miyama, Funabashi Chiba 274-8510 Japan
| | - Hidemasa Hikawa
- Faculty of Pharmaceutical Sciences, Toho University 2-2-1 Miyama, Funabashi Chiba 274-8510 Japan
| | - Shoko Kikkawa
- Faculty of Pharmaceutical Sciences, Toho University 2-2-1 Miyama, Funabashi Chiba 274-8510 Japan
| | - Isao Azumaya
- Faculty of Pharmaceutical Sciences, Toho University 2-2-1 Miyama, Funabashi Chiba 274-8510 Japan
| |
Collapse
|
5
|
Li S, Qiu J, Li B, Sun Z, Xie P, Loh TP. Practical allylation with unactivated allylic alcohols under mild conditions. Org Chem Front 2021. [DOI: 10.1039/d1qo00490e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A practical palladium/calcium catalytic system was developed for dehydrative allylation with unactivated allylic alcohols.
Collapse
Affiliation(s)
- Shuangshuang Li
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Ju Qiu
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Bowen Li
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Zuolian Sun
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Peizhong Xie
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Teck-Peng Loh
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
- Division of Chemistry and Biological Chemistry
| |
Collapse
|
6
|
Yu J, Chang X, Ma R, Zhou Q, Wei M, Cao X, Ma X. Water‐Promoted Dehydrative Tsuji–Trost Reaction of Non‐Derivatized Allylic Alcohols with Sulfinic Acids. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jing Yu
- College of Chemistry and Chemical Engineering Green Catalysis & Synthesis Key Laboratory of Xinyang City Xinyang Normal University 464000 Xinyang Henan China
| | - Xueping Chang
- College of Chemistry and Chemical Engineering Green Catalysis & Synthesis Key Laboratory of Xinyang City Xinyang Normal University 464000 Xinyang Henan China
| | - Ruitian Ma
- College of Chemistry and Chemical Engineering Green Catalysis & Synthesis Key Laboratory of Xinyang City Xinyang Normal University 464000 Xinyang Henan China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering Green Catalysis & Synthesis Key Laboratory of Xinyang City Xinyang Normal University 464000 Xinyang Henan China
| | - Mengmeng Wei
- College of Chemistry and Chemical Engineering Green Catalysis & Synthesis Key Laboratory of Xinyang City Xinyang Normal University 464000 Xinyang Henan China
| | - Xinhua Cao
- College of Chemistry and Chemical Engineering Green Catalysis & Synthesis Key Laboratory of Xinyang City Xinyang Normal University 464000 Xinyang Henan China
| | - Xiantao Ma
- College of Chemistry and Chemical Engineering Green Catalysis & Synthesis Key Laboratory of Xinyang City Xinyang Normal University 464000 Xinyang Henan China
| |
Collapse
|
7
|
Zhou Q, Zheng L, Ma B, Huang L, Liu A, Cao X, Yu J, Ma X. Insights into Substrate Self-Assisted Activation of Allylic Alcohols Guiding to Mild Allylic Substitution of Tautomerizable Heteroarenes. J Org Chem 2020; 85:5097-5103. [PMID: 32151136 DOI: 10.1021/acs.joc.0c00094] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A substrate self-assisted activation of allylic alcohols by tautomerizable heteroarenes via hydrogen bonding was disclosed by various NMR techniques, including variable-temperature 1H NMR, Job plot, and 1H NMR titration. Guided by these finding, a much milder allylic substitution of tautomerizable heteroarenes with allylic alcohols was developed, affording the target products in high yields.
Collapse
Affiliation(s)
- Qiuju Zhou
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Lingyun Zheng
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Bing Ma
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Lijun Huang
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Aoqi Liu
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Xinhua Cao
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Jing Yu
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Xiantao Ma
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China
| |
Collapse
|
8
|
Ma X, Yu J, Jiang M, Wang M, Tang L, Wei M, Zhou Q. Mild and Regioselective Bromination of Phenols with TMSBr. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900794] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiantao Ma
- College of Chemistry and Chemical Engineering; Xinyang Normal University; 464000 Xinyang Henan China
| | - Jing Yu
- College of Chemistry and Chemical Engineering; Xinyang Normal University; 464000 Xinyang Henan China
| | - Mengyuan Jiang
- College of Chemistry and Chemical Engineering; Xinyang Normal University; 464000 Xinyang Henan China
| | - Mengyu Wang
- College of Chemistry and Chemical Engineering; Xinyang Normal University; 464000 Xinyang Henan China
| | - Lin Tang
- College of Chemistry and Chemical Engineering; Xinyang Normal University; 464000 Xinyang Henan China
| | - Mengmeng Wei
- College of Chemistry and Chemical Engineering; Xinyang Normal University; 464000 Xinyang Henan China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering; Xinyang Normal University; 464000 Xinyang Henan China
| |
Collapse
|