1
|
Kumar R, Dohi T, Zhdankin VV. Organohypervalent heterocycles. Chem Soc Rev 2024; 53:4786-4827. [PMID: 38545658 DOI: 10.1039/d2cs01055k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
This review summarizes the structural and synthetic aspects of heterocyclic molecules incorporating an atom of a hypervalent main-group element. The term "hypervalent" has been suggested for derivatives of main-group elements with more than eight valence electrons, and the concept of hypervalency is commonly used despite some criticism from theoretical chemists. The significantly higher thermal stability of hypervalent heterocycles compared to their acyclic analogs adds special features to their chemistry, particularly for bromine and iodine. Heterocyclic compounds of elements with double bonds are not categorized as hypervalent molecules owing to the zwitterionic nature of these bonds, resulting in the conventional 8-electron species. This review is focused on hypervalent heterocyclic derivatives of nonmetal main-group elements, such as boron, silicon, nitrogen, carbon, phosphorus, sulfur, selenium, bromine, chlorine, iodine(III) and iodine(V).
Collapse
Affiliation(s)
- Ravi Kumar
- Department of Chemistry, J C Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, 121006, Haryana, India.
| | - Toshifumi Dohi
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Viktor V Zhdankin
- Department of Chemistry and Biochemistry, 1038 University Drive, 126 HCAMS University of Minnesota Duluth, Duluth, Minnesota 55812, USA.
| |
Collapse
|
2
|
Wang X, Ren W. Desymmetric [3+3] Cyclization of p-Quinamines for the Synthesis of 1,2,4-Oxadiazines and Hydroquinoxalines. Org Lett 2024; 26:1770-1774. [PMID: 38353481 DOI: 10.1021/acs.orglett.3c04157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
General and efficient strategies for highly diastereoselective synthesis of divergent heterocyclic scaffolds through desymmetric [3+3] cycloaddition of p-quinamines with 1,3-dipole surrogates hydroximoyl halides and α-halohydroxamates have been developed. This synthetic protocol provided a variety of heterocyclic architectures containing 1,2,4-oxadiazine and hydroquinoxaline skeletons in good yields with a wide substrate scope.
Collapse
Affiliation(s)
- Xuerui Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Weiwu Ren
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology (QNLM), Qingdao 266237, China
| |
Collapse
|
3
|
Doobary S, Di Tommaso EM, Postole A, Inge AK, Olofsson B. Structure-reactivity analysis of novel hypervalent iodine reagents in S-vinylation of thiols. Front Chem 2024; 12:1376948. [PMID: 38487782 PMCID: PMC10937425 DOI: 10.3389/fchem.2024.1376948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024] Open
Abstract
The transition-metal free S-vinylation of thiophenols by vinylbenziodoxolones (VBX) constituted an important step forward in hypervalent iodine-mediated vinylations, highlighting the difference to vinyliodonium salts and that the reaction outcome was influenced by the substitution pattern of the benziodoxolone core. In this study, we report several new classes of hypervalent iodine vinylation reagents; vinylbenziodazolones, vinylbenziodoxolonimine and vinyliodoxathiole dioxides. Their synthesis, structural and electronic properties are described and correlated to the S-vinylation outcome, shedding light on some interesting facets of these reagents.
Collapse
Affiliation(s)
- Sayad Doobary
- Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | | | - Alexandru Postole
- Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | - A. Ken Inge
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Berit Olofsson
- Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| |
Collapse
|
4
|
Chen CM, Yang YN, Kong YZ, Zhu BH, Qian PC, Zhou B, Ye LW. Copper-catalyzed intermolecular formal (5 + 1) annulation of 1,5-diynes with 1,2,5-oxadiazoles. Commun Chem 2023; 6:194. [PMID: 37700020 PMCID: PMC10497616 DOI: 10.1038/s42004-023-00999-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
One-carbon homologation reactions based on one-carbon insertion into the N-O bond of heterocycles have received tremendous interest over the past decades. However, these protocols have to rely on the use of hazardous and not easily accessible diazo compounds as precursors, and examples of the relevant asymmetric catalysis have not been reported. Here we show that a copper-catalyzed intermolecular formal (5 + 1) annulation of 1,5-diynes with 1,2,5-oxadiazoles involving one-carbon insertion into the heterocyclic N-O bond via non-diazo approach. This method enables practical and atom-economic synthesis of valuable pyrrole-substituted oxadiazines in generally moderate to good yields under mild reaction conditions. In addition, the possibility of such an asymmetric formal (5 + 1) annulation also emerges.
Collapse
Affiliation(s)
- Can-Ming Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Ye-Nan Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Yin-Zhu Kong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Bo-Han Zhu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, China
| | - Peng-Cheng Qian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, China.
- Wenzhou Key Laboratory of Technology and Application of Environmental Functional Materials, Institute of New Materials & Industry Technology, Wenzhou University, Wenzhou, China.
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
5
|
Mironova IA, Noskov DM, Yoshimura A, Yusubov MS, Zhdankin VV. Aryl-, Akynyl-, and Alkenylbenziodoxoles: Synthesis and Synthetic Applications. Molecules 2023; 28:2136. [PMID: 36903382 PMCID: PMC10004369 DOI: 10.3390/molecules28052136] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 03/02/2023] Open
Abstract
Hypervalent iodine reagents are in high current demand due to their exceptional reactivity in oxidative transformations, as well as in diverse umpolung functionalization reactions. Cyclic hypervalent iodine compounds, known under the general name of benziodoxoles, possess improved thermal stability and synthetic versatility in comparison with their acyclic analogs. Aryl-, alkenyl-, and alkynylbenziodoxoles have recently received wide synthetic applications as efficient reagents for direct arylation, alkenylation, and alkynylation under mild reaction conditions, including transition metal-free conditions as well as photoredox and transition metal catalysis. Using these reagents, a plethora of valuable, hard-to-reach, and structurally diverse complex products can be synthesized by convenient procedures. The review covers the main aspects of the chemistry of benziodoxole-based aryl-, alkynyl-, and alkenyl- transfer reagents, including preparation and synthetic applications.
Collapse
Affiliation(s)
- Irina A. Mironova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Dmitrii M. Noskov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Akira Yoshimura
- Faculty of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Mekhman S. Yusubov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Viktor V. Zhdankin
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA
| |
Collapse
|
6
|
Le Du E, Waser J. Recent progress in alkynylation with hypervalent iodine reagents. Chem Commun (Camb) 2023; 59:1589-1604. [PMID: 36656618 PMCID: PMC9904279 DOI: 10.1039/d2cc06168f] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/23/2022] [Indexed: 01/20/2023]
Abstract
Although alkynes are one of the smallest functional groups, they are among the most versatile building blocks for organic chemistry, with applications ranging from biochemistry to material sciences. Alkynylation reactions have traditionally relied on the use of acetylenes as nucleophiles. The discovery and development of ethynyl hypervalent iodine reagents have allowed to greatly expand the transfer of alkynes as electrophilic synthons. In this feature article the progress in the field since 2018 will be presented. After a short introduction on alkynylation reactions and hypervalent iodine reagents, the developments in the synthesis of alkynyl hypervalent iodine reagents will be discussed. Their recent use in base-mediated and transition-metal catalyzed alkynylations will be described. Progress in radical-based alkynylations and atom-economical transformations will then be presented.
Collapse
Affiliation(s)
- Eliott Le Du
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne EPFL, SB ISIC, LCSO, BCH 4306, 1015, Lausanne, Switzerland.
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne EPFL, SB ISIC, LCSO, BCH 4306, 1015, Lausanne, Switzerland.
| |
Collapse
|
7
|
Ho VQT, Rong MK, Habjan E, Bommer SD, Pham TV, Piersma SR, Bitter W, Ruijter E, Speer A. Dysregulation of Mycobacterium marinum ESX-5 Secretion by Novel 1,2,4-oxadiazoles. Biomolecules 2023; 13:biom13020211. [PMID: 36830581 PMCID: PMC9953084 DOI: 10.3390/biom13020211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
The ESX-5 secretion system is essential for the viability and virulence of slow-growing pathogenic mycobacterial species. In this study, we identified a 1,2,4-oxadiazole derivative as a putative effector of the ESX-5 secretion system. We confirmed that this 1,2,4-oxadiazole and several newly synthesized derivatives inhibited the ESX-5-dependent secretion of active lipase LipY by Mycobacterium marinum (M. marinum). Despite reduced lipase activity, we did not observe a defect in LipY secretion itself. Moreover, we found that several other ESX-5 substrates, especially the high molecular-weight PE_PGRS MMAR_5294, were even more abundantly secreted by M. marinum treated with several 1,2,4-oxadiazoles. Analysis of M. marinum grown in the presence of different oxadiazole derivatives revealed that the secretion of LipY and the induction of PE_PGRS secretion were, in fact, two independent phenotypes, as we were able to identify structural features in the compounds that specifically induced only one of these phenotypes. Whereas the three most potent 1,2,4-oxadiazoles displayed only a mild effect on the growth of M. marinum or M. tuberculosis in culture, these compounds significantly reduced bacterial burden in M. marinum-infected zebrafish models. In conclusion, we report a 1,2,4-oxadiazole scaffold that dysregulates ESX-5 protein secretion.
Collapse
Affiliation(s)
- Vien Q. T. Ho
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Vrije Universiteit Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Mark K. Rong
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Eva Habjan
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Vrije Universiteit Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Samantha D. Bommer
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Thang V. Pham
- Department of Medical Oncology, OncoProteomics Laboratory, AmsterdamUMC, Vrije Universiteit Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Sander R. Piersma
- Department of Medical Oncology, OncoProteomics Laboratory, AmsterdamUMC, Vrije Universiteit Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Vrije Universiteit Medical Center, 1081 HV Amsterdam, The Netherlands
- Department of Molecular Microbiology, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Eelco Ruijter
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Alexander Speer
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Vrije Universiteit Medical Center, 1081 HV Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
8
|
Shimizu A, Shibata A, Kano T, Kumai Y, Kawakami R, Esaki H, Fukushima K, Tada N, Itoh A. Synthesis of 4-Imidazolidinones from Diamides and Ethynyl Benziodoxolones via Double Michael-Type Addition: Ethynyl Benziodoxolones as Electrophilic Ynol Synthons. Org Lett 2022; 24:8859-8863. [DOI: 10.1021/acs.orglett.2c03648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ayaka Shimizu
- Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Atsushi Shibata
- Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Takashi Kano
- Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Yuuichi Kumai
- Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Ryouhei Kawakami
- Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Hiroyoshi Esaki
- Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Kazuaki Fukushima
- Hyogo Medical University, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Norihiro Tada
- Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| | - Akichika Itoh
- Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan
| |
Collapse
|
9
|
Presnukhina SI, Tarasenko MV, Geyl KK, Baykova SO, Baykov SV, Shetnev AA, Boyarskiy VP. Unusual Formation of 1,2,4-Oxadiazine Core in Reaction of Amidoximes with Maleic or Fumaric Esters. Molecules 2022; 27:molecules27217508. [PMID: 36364335 PMCID: PMC9655267 DOI: 10.3390/molecules27217508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
We have developed a simple and convenient method for the synthesis of 3-aryl- and 3-hetaryl-1,2,4-oxadiazin-5-ones bearing an easily functionalizable (methoxycarbonyl)methyl group at position 6 via the reaction of aryl or hetaryl amidoximes with maleates or fumarates. The conditions for this reaction were optimized. Different products can be synthesized selectively in good yields depending on the base used and the ratio of reactants: substituted (1,2,4-oxadiazin-6-yl)acetic acids, corresponding methyl esters, or hybrid 3-(aryl)-6-((3-(aryl)-1,2,4-oxadiazol-5-yl)methyl)-4H-1,2,4-oxadiazin-5(6H)-ones. The reaction is tolerant to substituents’ electronic and steric effects in amidoximes. As a result, a series of 2-(5-oxo-3-(p-tolyl)-5,6-dihydro-4H-1,2,4-oxadiazin-6-yl)acetic acids, their methyl esters, and 1,2,4-oxadiazoles based on them were prepared and characterized by HRMS, 1H, and 13C NMR spectroscopy. The structures of three of them were elucidated with X-ray diffraction.
Collapse
Affiliation(s)
- Sofia I. Presnukhina
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia
| | - Marina V. Tarasenko
- Pharmaceutical Technology Transfer Centre, Yaroslavl State Pedagogical University Named after K.D. Ushinsky, 108 Respublikanskaya St., 150000 Yaroslavl, Russia
| | - Kirill K. Geyl
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia
| | - Svetlana O. Baykova
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia
| | - Sergey V. Baykov
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia
| | - Anton A. Shetnev
- Pharmaceutical Technology Transfer Centre, Yaroslavl State Pedagogical University Named after K.D. Ushinsky, 108 Respublikanskaya St., 150000 Yaroslavl, Russia
| | - Vadim P. Boyarskiy
- Institute of Chemistry, Saint Petersburg State University, 7/9 Universitetskaya Nab., 199034 Saint Petersburg, Russia
- Correspondence:
| |
Collapse
|
10
|
Li J, Zhou C, Liang H, Guo XQ, Chen LM, Kang TR. Direct One‐Pot Construction of Diaryl Thioethers and 1,3‐Diynes through a Copper(I)‐Catalyzed Reaction of λ3‐Iodanes with Thiophenols. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jun Li
- Chengdu University School of Pharmacy CHINA
| | - Chuang Zhou
- Chengdu University School of Food and Biological Engineering CHINA
| | - Hong Liang
- Chengdu University School of Pharmacy CHINA
| | | | - Lian-Mei Chen
- Chengdu University School of Food and Biological Engineering CHINA
| | - Tai-Ran Kang
- Chengdu University School of Food and Biological Engineering No 1, SHIDA ROAD 610106 Chengdu CHINA
| |
Collapse
|
11
|
He SD, Guo XQ, Li J, Zhang YC, Chen LM, Kang TR. Base‐Promoted Reaction of Phenols with Spirocylic λ3‐iodanes: Access to both 2‐Iodovinyl Aryl Ethers and Diaryl Ethers. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shun-Dong He
- Chengdu University Sichuan Industrial Institute of Antibiotics, School of Pharmacy Chengdu CHINA
| | - Xiao-Qiang Guo
- Chengdu University Sichuan Industrial Institute of Antibiotics, School of Pharmacy CHINA
| | - Jun Li
- Chengdu University Sichuan Industrial Institute of Antibiotics, School of Pharmacy CHINA
| | - Yu-Cheng Zhang
- Chengdu University Sichuan Industrial Institute of Antibiotics, School of Pharmacy CHINA
| | - Lian-Mei Chen
- Chengdu University School of Food and Biological Engineering CHINA
| | - Tai-Ran Kang
- Chengdu University School of Food and Biological Engineering No 1, SHIDA ROAD 610106 Chengdu CHINA
| |
Collapse
|
12
|
Zhao M, Yang Z, Yang D. Recent Progress in Synthesis of Polysubstituted Imidazoles by Cyclization Reaction. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Zhang Y, Kuang J, Xiao X, Wang L, Ma Y. DMSO as a Dual Carbon Synthon and Water as Oxygen Donor for the Construction of 1,3,5-Oxadiazines from Amidines. Org Lett 2021; 23:3960-3964. [PMID: 33938756 DOI: 10.1021/acs.orglett.1c01116] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A selective and efficient synthesis of diaryl 1,3,5-oxadiazines was established for the first time from simple and readily available amidines in wet DMSO. DMSO was employed as a dual carbon synthon and water offered the oxygen atom to construct the oxadiazine ring. The reaction involved two new C-N and two new C-O bond formations.
Collapse
Affiliation(s)
- Yi Zhang
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P.R. China.,College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, P.R. China
| | - Jinqiang Kuang
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P.R. China
| | - Xuqiong Xiao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, no. 2318 Yuhangtang Road, Hangzhou311121, P.R. China
| | - Lei Wang
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P.R. China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P.R. China.,College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, P.R. China
| |
Collapse
|
14
|
Han W, Yu J, Kang Z, Song L, Pi R, Dong S, Xiong Y, Xia F, Li Z, Liu S. Dual Functional Pd-Catalyzed Multicomponent Reaction by Umpolung Chemistry of the Oxygen Atom in Electrophiles. J Org Chem 2021; 86:6847-6854. [PMID: 33844915 DOI: 10.1021/acs.joc.0c02413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A Pd-catalyzed multicomponent reaction was developed by trapping oxomium ylide with nitrosobenzene via Pd-promoted umpolung chemistry. The Pd catalyst plays two important roles: diazo compound decomposed catalyst and Lewis acid for the activation of nitrosobenzene. This strategy provides some insight into a new way for discovery of multicomponent methodology to construct complex molecules. The developed method also provides rapid access to a series of O-(2-oxy) hydroxylamine derivatives, which exhibit good anticancer activity in osteosarcoma cells.
Collapse
Affiliation(s)
- Wangyujing Han
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, China 200062
| | - Jie Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, China 200062
| | - Zhenghui Kang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, China 200062
| | - Longlong Song
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, China 200062
| | - Rou Pi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, China 200062
| | - Suzhen Dong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, China 200062
| | - Yuqing Xiong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, China 200062
| | - Fei Xia
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, China 200062
| | - Zi Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, China 200062
| | - Shunying Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, China 200062
| |
Collapse
|
15
|
Shimbo D, Maruyama T, Tada N, Itoh A. N-Alkenylation of hydroxamic acid derivatives with ethynyl benziodoxolone to synthesize cis-enamides through vinyl benziodoxolones. Org Biomol Chem 2021; 19:2442-2447. [PMID: 33666207 DOI: 10.1039/d1ob00055a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The stereoselective synthesis of cis-β-N-alkoxyamidevinyl benziodoxolones (cis-β-N-RO-amide-VBXs) from O-alkyl hydroxamic acids in the presence of an ethynyl benziodoxolone-acetonitrile complex (EBX-MeCN) is reported herein. The reaction was performed under mild conditions including an aqueous solvent, a mild base, and room temperature. The reaction tolerated various O-alkyl hydroxamic acids derived from carboxylic acids, such as amino acids, pharmaceuticals, and natural products. Vinyl dideuterated cis-β-N-MeO-amide-VBXs were also synthesized using deuterium oxide as the deuterium source. Valine-derived cis-β-N-MeO-amide-VBX was stereospecifically derivatized to hydroxamic acid-derived cis-enamides without the loss of stereoselectivity or reduction in the deuterium/hydrogen ratio.
Collapse
Affiliation(s)
- Daisuke Shimbo
- Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan.
| | | | | | | |
Collapse
|
16
|
Sun X, Guo XQ, Chen LM, Kang TR. Synthesis, Characterization of Spirocyclic λ 3 -Iodanes and Their Application to Prepare 4,1-Benzoxazepine-2,5-diones and 1,3-Diynes. Chemistry 2021; 27:4312-4316. [PMID: 33326645 DOI: 10.1002/chem.202005124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Indexed: 11/10/2022]
Abstract
Herein, a [3+2] cycloaddition of aza-oxyallylic cations with ethynylbenziodoxolones for synthesis of new λ3 -iodanes containing spirocyclic 4-oxazolidinone has been developed. This cyclic λ3 -iodanes display stability in air and excellent solubility in organic solvent. Using them as substrate, both the 4,1-benzoxazepine-2,5-diones and symmetrical 1,3-diynes derivatives were afforded in high yield under copper(I)-catalyzed conditions.
Collapse
Affiliation(s)
- Xu Sun
- School of Food and Biological Engineering, Chengdu University, Chengdu City, 610106, P. R. China.,Collaborative Innovation Center of Tissue Repair Material of, Sichuan Province, College of Chemistry & Chemical Engineering, China West Normal University, Nanchong City, Sichuan, 637002, P. R. China
| | - Xiao-Qiang Guo
- School of Food and Biological Engineering, Chengdu University, Chengdu City, 610106, P. R. China
| | - Lian-Mei Chen
- School of Food and Biological Engineering, Chengdu University, Chengdu City, 610106, P. R. China
| | - Tai-Ran Kang
- School of Food and Biological Engineering, Chengdu University, Chengdu City, 610106, P. R. China.,Collaborative Innovation Center of Tissue Repair Material of, Sichuan Province, College of Chemistry & Chemical Engineering, China West Normal University, Nanchong City, Sichuan, 637002, P. R. China
| |
Collapse
|
17
|
Yang YO, Wang X, Xiao J, Li Y, Sun F, Du Y. Formation of Carbon-Nitrogen Bond Mediated by Hypervalent Iodine Reagents Under Metal-free Conditions. CURR ORG CHEM 2021. [DOI: 10.2174/1385272822999201117154919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
In the past several decades, hypervalent iodine chemistry has witnessed prosperous
development as hypervalent iodine reagents have been widely used in various organic transformations.
Specifically, hypervalent iodine reagents have been vastly used in various bondforming
reactions. Among these oxidative coupling reactions, the reactions involving the
formation of C-N bond have been extensively explored to construct various heterocyclic
skeletons and synthesize various useful building blocks. This review article is to summarize
all the transformations in which carbon-nitrogen bond formation occurred by using hypervalent
iodine reagents under metal-free conditions.
Collapse
Affiliation(s)
- Yaxin O. Yang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Xi Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Jiaxi Xiao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yadong Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Fengxia Sun
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology; Hebei Research Center of Pharmaceutical and Chemical Engineering, Shijiazhuang 050018, China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
18
|
Ura T, Shimbo D, Yudasaka M, Tada N, Itoh A. Synthesis of Phenol-Derived cis-Vinyl Ethers Using Ethynyl Benziodoxolone. Chem Asian J 2020; 15:4000-4004. [PMID: 33058543 DOI: 10.1002/asia.202001102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/07/2020] [Indexed: 12/19/2022]
Abstract
The stereoselective synthesis of cis-β-phenoxyvinyl benziodoxolones (cis-β-phenol-VBXs) from an ethynyl benziodoxolone-acetonitrile complex (EBX-MeCN) and various phenols is reported herein. The reaction tolerates different phenol derivatives, including complex natural products, and can be conducted under mild conditions. The synthesis was performed in an aqueous solvent in the absence and presence of a catalytic amount of a base. Selectively mono- and di-deuterated cis-β-phenol-VBXs were also prepared. cis-β-Phenol-VBXs were stereospecifically derivatized to cis-alkynylvinyl ethers and cis-iodovinyl ethers without loss of stereoselectivity or reduction in the deuterium/hydrogen ratio.
Collapse
Affiliation(s)
- Tomoki Ura
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196, Japan
| | - Daisuke Shimbo
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196, Japan
| | - Masaharu Yudasaka
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196, Japan
| | - Norihiro Tada
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196, Japan
| | - Akichika Itoh
- Laboratory of Pharmaceutical Synthetic Chemistry, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196, Japan
| |
Collapse
|
19
|
Declas N, Pisella G, Waser J. Vinylbenziodoxol(on)es: Synthetic Methods and Applications. Helv Chim Acta 2020. [DOI: 10.1002/hlca.202000191] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nina Declas
- Laboratory of Catalysis and Organic Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO Av. Forel 2 CH-1015 Lausanne Switzerland
| | - Guillaume Pisella
- Laboratory of Catalysis and Organic Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO Av. Forel 2 CH-1015 Lausanne Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO Av. Forel 2 CH-1015 Lausanne Switzerland
| |
Collapse
|
20
|
|
21
|
Ciccolini C, Mari G, Gatti FG, Gatti G, Giorgi G, Mantellini F, Favi G. Synthesis of Polycyclic Fused Indoline Scaffolds through a Substrate-Guided Reactivity Switch. J Org Chem 2020; 85:11409-11425. [PMID: 32786612 PMCID: PMC8010796 DOI: 10.1021/acs.joc.0c01489] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Zn(II)-catalyzed
divergent synthesis of functionalized polycyclic
indolines through formal [3 + 2] and [4 + 2] cycloadditions of indoles
with 1,2-diaza-1,3-dienes (DDs) is reported. The nature and type of
substituents of substrates are found to act as a chemical switch to
trigger two distinct reaction pathways and to obtain two different
types of products upon the influence of the same catalyst. The mechanism
of both [4 + 2] and [3 + 2] cycloadditions was investigated and fully
rationalized by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Cecilia Ciccolini
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino, Italy
| | - Giacomo Mari
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino, Italy
| | - Francesco G Gatti
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Giuseppe Gatti
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino, Italy
| | - Gianluca Giorgi
- Department of Biotechnologies, Chemistry & Pharmacy, University of Siena, Via A. Moro 2, 53100 Siena, Italy
| | - Fabio Mantellini
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino, Italy
| | - Gianfranco Favi
- Department of Biomolecular Sciences, Section of Chemistry and Pharmaceutical Technologies, University of Urbino "Carlo Bo", Via I Maggetti 24, 61029 Urbino, Italy
| |
Collapse
|
22
|
Liu B, Alegre-Requena JV, Paton RS, Miyake GM. Unconventional Reactivity of Ethynylbenziodoxolone Reagents and Thiols: Scope and Mechanism. Chemistry 2020; 26:2386-2394. [PMID: 31657063 PMCID: PMC7044075 DOI: 10.1002/chem.201904520] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Indexed: 12/12/2022]
Abstract
1,2-Dithio-1-alkenes are biologically active compounds widely implemented throughout organic synthesis, functional materials, coordination chemistry, and pharmaceuticals. Traditional methods for accessing 1,2-dithio-1-alkenes often demand transition metal catalysts, specialized or air-sensitive ligands, high temperatures, and disulfides (R2 S2 ). Herein, a general and efficient strategy utilizing ethynylbenziodoxolone (EBX) reagents and thiols is presented that results in the formation of 1,2-dithio-1-alkenes with excellent regioselectivity and stereoselectivity through unprecedented reactivity between the EBX and the thiol. This operationally simple procedure utilizes mild conditions, which result in a broad substrate scope and high functional-group tolerance. The observed unexpected reactivity has been rationalized through both experimental results and DFT calculations.
Collapse
Affiliation(s)
- Bin Liu
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Juan V Alegre-Requena
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523, USA
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, OX1 3TA, UK
| | - Garret M Miyake
- Department of Chemistry, Colorado State University, Fort Collins, Colorado, 80523, USA
| |
Collapse
|
23
|
Li M, Wang JH, Li W, Lin CD, Zhang LB, Wen LR. N-Phenoxyamides as Multitasking Reagents: Base-Controlled Selective Construction of Benzofurans or Dihydrobenzofuro[2,3-d]oxazoles. J Org Chem 2019; 84:8523-8530. [DOI: 10.1021/acs.joc.9b00858] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Ming Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jia-Hui Wang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Wei Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Cheng-Dong Lin
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Lin-Bao Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Li-Rong Wen
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|