1
|
Liu XQ, Chen YJ, Zou PS, Su JC, Pan CX, Mo DL, Su GF. Synthesis of Indole-Fused Pyrazino[1,2-a]quinazolinones by Copper(I)-Catalyzed Selective Hydroamination-Cyclization of Alkynyl-tethered Quinazolinones. Chemistry 2024; 30:e202402085. [PMID: 38926940 DOI: 10.1002/chem.202402085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
We described a copper(I)-catalyzed atom economic and selective hydroamination-cyclization of alkynyl-tethered quinazolinones to prepare a variety of indole-fused pyrazino[1,2-a]quinazolinones in good to excellent yields ranging from 39 %-99 % under mild reaction conditions. Control experiments revealed that coordination-directed method of quinazolinone moiety with copper(I) was important for the selective hydroamination-cyclization of alkynes at the N1-atom instead of N3-atom of quinazolinone. The reaction could be easily performed at gram scales and some prepared indole-fused pyrazino[1,2-a]quinazolinones with donating groups on the indole moiety showed a distinct fluorescence emission wavelength with blue shift under the acid conditions.
Collapse
Affiliation(s)
- Xiao-Qing Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, 541004, Guilin, China
| | - Yan-Jie Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, 541004, Guilin, China
| | - Pei-Sen Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, 541004, Guilin, China
| | - Jun-Cheng Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, 541004, Guilin, China
| | - Cheng-Xue Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, 541004, Guilin, China
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, 541004, Guilin, China
| | - Gui-Fa Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, 541004, Guilin, China
| |
Collapse
|
2
|
Pang Q, Zuo WF, Zhang Y, Li X, Han B. Recent Advances on Direct Functionalization of Indoles in Aqueous Media. CHEM REC 2023; 23:e202200289. [PMID: 36722727 DOI: 10.1002/tcr.202200289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/15/2023] [Indexed: 02/02/2023]
Abstract
Indoles and their derivatives have dominated a significant proportion of nitrogen-containing heterocyclic compounds and play an essential role in synthetic and medicinal chemistry, pesticides, and advanced materials. Compared with conventional synthetic strategies, direct functionalization of indoles provides straightforward access to construct diverse indole scaffolds. As we enter an era emphasizing green and sustainable chemistry, utilizing environment-friendly solvents represented by water demonstrates great potential in synthesizing valuable indole derivatives. This review aims to depict the critical aspects of aqueous-mediated indoles functionalization over the past decade and discusses the future challenges and prospects in this fast-growing field. For the convenience of readers, this review is classified into three parts according to the bonding modes (C-C, C-N, and C-S bonds), which focus on the diversity of indole derivatives, the prominent role of water in the chemical process, and the types of catalyst systems and mechanisms. We hope this review can promote the sustainable development of the direct functionalization of indoles and their derivatives and the discovery of novel and practical organic methods in aqueous phase.
Collapse
Affiliation(s)
- Qiwen Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei-Fang Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
3
|
Chen F, Zhu C, Yang Z, Liu C, Zeng H, Wu W, Jiang H. C–H Amination Enabled [2+1+1+1] Annulation Reaction in Water: Access to Benzoxazoles. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Fulin Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Chuanle Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Zhiyi Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Chi Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Hao Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 P. R. China
- State Key Laboratory of Applied Organic Chemistry Lanzhou University Lanzhou 730000 P. R. China
| |
Collapse
|
4
|
De SK. Applications of Nickel(II) Compounds in Organic Synthesis. Curr Org Synth 2021; 18:517-534. [PMID: 33655838 DOI: 10.2174/1570179418666210224124931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 11/22/2022]
Abstract
This review article summarizes the applications of nickel(II) compounds in organic synthesis since 2016. In recent years, the field of nickel(II) catalysis is gaining considerable interest due to readily available, low-cost nickel(II)-compounds and several key properties of nickel. This review article is organized by the reaction type, although some reactions can be placed in multiple sections.
Collapse
Affiliation(s)
- Surya K De
- Supra Sciences, San Diego, California, United States
| |
Collapse
|
5
|
Zhang K, Tran C, Alami M, Hamze A, Provot O. Synthesis and Biological Activities of Pyrazino[1,2- a]indole and Pyrazino[1,2- a]indol-1-one Derivatives. Pharmaceuticals (Basel) 2021; 14:ph14080779. [PMID: 34451876 PMCID: PMC8399128 DOI: 10.3390/ph14080779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 01/14/2023] Open
Abstract
This review concerns the synthesis and biological activities of pyrazino[1,2-a]indoles and pyrazino[1,2-a]indol-1-ones reported since 1997 and the discovery of biological activity of pyrazinoindole derivatives. In the first part, we first presented the synthetic routes that have been reported from a methodological point of view to access the pyrazinoindole unit according to cyclization reactions using or not using metal catalysts. Then, syntheses and neuropsychiatric, auto-immune, anti-infectious and anti-cancer properties of pyrazinoindoles were detailed. In the second part, we first reported the main accesses to pyrazinoindol-1-one substrates according to Michael reactions, metal-catalyzed and metal-free cyclization reactions. The syntheses and anti-cancer, anti-infectious, anti-allergenic and neuropsychiatric properties of pyrazinoindolones were next described and discussed.
Collapse
|
6
|
Ashram M, Al-Mustafa A, Al-Zereini WA, Awwadi FF, Ashram I. A convenient one-pot approach to the synthesis of novel pyrazino[1,2- a]indoles fused to heterocyclic systems and evaluation of their biological activity as acetylcholinesterase inhibitors. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2021. [DOI: 10.1515/znb-2020-0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Pyrazino[1,2-a]indoles fused with various heterocycles, such as oxazolidine, oxazinane, imidazolidine, hexahydropyrimidine and benzimidazole, were synthesized transition metal-free by domino reactions which involved the condensation of 1-(2-bromoethyl)-3-chloro-1H-indole-2-carbaldehydes 28–31 with various nucleophilic amines, resulting in the formation of two new interesting fused heterocycles. The anticholinesterase, antioxidant and antibacterial activities of the compounds were evaluated. Acetylcholinesterase (AChE) inhibitory activities were tested by Ellman’s assay, antioxidant activities were detected using the 2,2-azinobis[3-ethylbenzthiazoline]-6-sulfonic acid (ABTS•+) free-radical scavenging method and antibacterial activities were determined by agar diffusion tests. The oxazolo-pyrazino[1,2-a]indoles (8, 10), the oxazino-pyrazino[1,2-a]indoles (16, 18, 19), the pyrimido-pyrazino[1,2-a]indole (22), and the benzoimidazo-pyrazino[1,2-a]indole (27) possessed the highest inhibitory activity against AChE with IC50 values in the range 20–40 μg mL−1. The oxazolo-pyrazino[1,2-a]indoles (8, 9), the imidazo-pyrazino[1,2-a]indoles (12, 13), and the benzoimidazo-pyrazino[1,2-a]indole (24) revealed the highest antioxidant values with IC50 values less than 300 μg mL−1. However, the oxazolo-pyrazino[1,2-a]indole (11) and imidazo-pyrazino[1,2-a]indoles (12, 13) exhibited weak to moderate bioactivities against all tested Gram-positive bacteria, namely Staphylococcus aureus, Bacillus subtilis and Bacillus cereus.
Collapse
Affiliation(s)
- Muhammad Ashram
- Chemistry Department , Mutah University , Mutah , Al-Karak , Jordan
| | - Ahmed Al-Mustafa
- Department of Biological Sciences , Mutah University , Mutah , Al-Karak , Jordan
| | - Wael A. Al-Zereini
- Department of Biological Sciences , Mutah University , Mutah , Al-Karak , Jordan
| | - Firas F. Awwadi
- Chemistry Department , The University of Jordan , Amman 11942 , Jordan
| | - Islam Ashram
- Pharmacy College, Aqaba University of Technology , Aqaba , Jordan
| |
Collapse
|
7
|
Chen F, Zhu C, Jiang H. [3+1+1] Annulation Reaction of Benzo‐1,2‐Quinones, Aldehydes and Hydroxylamine Hydrochloride: Access to Benzoxazoles with Inorganic Nitrogen Source. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fulin Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 People's Republic of China
| | - Chuanle Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 People's Republic of China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical Engineering South China University of Technology Guangzhou 510640 People's Republic of China
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University) Lanzhou 730000 People's Republic of China
| |
Collapse
|
8
|
|
9
|
Liu XC, Chen XL, Liu Y, Sun K, Peng YY, Qu LB, Yu B. Visible-Light-Induced Metal-Free Synthesis of 2-Phosphorylated Thioflavones in Water. CHEMSUSCHEM 2020; 13:298-303. [PMID: 31713317 DOI: 10.1002/cssc.201902817] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/07/2019] [Indexed: 06/10/2023]
Abstract
The introduction of phosphorus functional groups into the skeleton of thioflavones is an attractive task and of great significance. Herein, a metal-free visible-light-induced radical cascade cyclization was developed for the preparation of 2-phosphorylated thioflavones from methylthiolated alkynones and phosphine oxides. In water as a green reaction medium, a large number of such 2-phosphorylated thioflavones were prepared, catalyzed by 4CzIPN [1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene] under visible-light irradiation. These reactions could be performed at ambient temperature and feature simple operation, wide reaction scope, and recyclability of aqueous media.
Collapse
Affiliation(s)
- Xiao-Ceng Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Xiao-Lan Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Yan Liu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P.R. China
- College of Biological and Pharmaceutical Engineering, Xinyang Agriculture & Forestry University, Xinyang, 464000, P.R. China
| | - Kai Sun
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Yu-Yu Peng
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, Changsha University of Science and Technology, Changsha, 410114, P.R. China
| | - Ling-Bo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P.R. China
| | - Bing Yu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P.R. China
| |
Collapse
|
10
|
Ivanov AV, Martynovskaya SV, Shcherbakova VS, Ushakov IA, Borodina TN, Bobkov AS, Vitkovskaya NM. Ambient access to a new family of pyrrole-fused pyrazine nitrones via 2-carbonyl- N-allenylpyrroles. Org Chem Front 2020. [DOI: 10.1039/d0qo00762e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The chemo-, regio- and stereoselective synthesis of pyrrole-fused pyrazine nitrones via the direct reaction of 2-carbonyl-N-allenylpyrroles (readily accessible from the corresponding NH-pyrroles) with hydroxyl amine hydrochloride has been developed.
Collapse
Affiliation(s)
- Andrey V. Ivanov
- Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Svetlana V. Martynovskaya
- Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Victoria S. Shcherbakova
- Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Igor A. Ushakov
- Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Tatyana N. Borodina
- Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Alexander S. Bobkov
- Laboratory of Quantum Chemical Modeling of Molecular Systems
- Irkutsk State University
- 664003 Irkutsk
- Russian Federation
| | - Nadezhda M. Vitkovskaya
- Laboratory of Quantum Chemical Modeling of Molecular Systems
- Irkutsk State University
- 664003 Irkutsk
- Russian Federation
| |
Collapse
|