1
|
Moon CS, Kang HM, Nam Y, Lim J, Kim J, Lee TH, Lee J, Chang MS, Lee JY. Structural Modification and Characteristics of Lappaconitine Alkaloid for the Discovery of Bioactive Components by Hypervalent Iodine Reagent. Org Lett 2024; 26:6535-6539. [PMID: 39087787 DOI: 10.1021/acs.orglett.4c01927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Lappaconitine, a diterpene alkaloid isolated from Aconitum sinomontanum Nakai, exhibits a wide range of biological activities, making it a promising candidate for the development of novel derivatives with therapeutic potential. In our research, we executed a two-step transformation via oxidative cleavage of lappaconitine's vicinal diol using the hypervalent iodine reagent PhI(OAc)2, followed by strong alkaline hydrolysis. This approach yielded four new unanticipated compounds, whose structures were identified by spectroscopic methods and/or X-ray crystallography. Thus, we proposed plausible reaction mechanisms for their formations and particularly investigated the remarkable diastereoselectivity for the formation of single stereoisomer 8 observed during the alkaline hydrolysis step. Among them, compound 8 (code name: QG3030) demonstrated both enhanced osteogenic differentiation of human mesenchymal stem cells and significant osteogenic effect in an ovariectomized rat model with no acute oral toxicity.
Collapse
Affiliation(s)
- Chang Sang Moon
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Heung Mo Kang
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yunchan Nam
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jiwoong Lim
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
- Center for Integrative Chemical Biology and Drug Discovery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Jiewan Kim
- Qgenetics, Seoul Bio Cooperation Center 504, 23 Kyunghee dae-ro, Dongdaemun-gu Seoul 02447, Republic of Korea
| | - Tae-Hee Lee
- Qgenetics, Seoul Bio Cooperation Center 504, 23 Kyunghee dae-ro, Dongdaemun-gu Seoul 02447, Republic of Korea
| | - Junho Lee
- Qgenetics, Seoul Bio Cooperation Center 504, 23 Kyunghee dae-ro, Dongdaemun-gu Seoul 02447, Republic of Korea
| | - Mun Seog Chang
- Qgenetics, Seoul Bio Cooperation Center 504, 23 Kyunghee dae-ro, Dongdaemun-gu Seoul 02447, Republic of Korea
- Department of Prescriptionology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae Yeol Lee
- Research Institute for Basic Sciences and Department of Chemistry, College of Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Testen Ž, Jereb M. Oxidation of N-trifluoromethylthio sulfoximines using NaOCl·5H 2O. Org Biomol Chem 2024; 22:2012-2020. [PMID: 38240529 DOI: 10.1039/d3ob02033a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
N-Trifluoromethylthio sulfoximines are biologically interesting compounds, but their potential is still poorly understood. The oxidation of N-trifluoromethylthio sulfoximines led to their corresponding sulfoxide derivatives as a new class of compounds, when using sodium hypochlorite pentahydrate (NaOCl·5H2O) as a green and relatively unexplored reagent. The reactions took place with a small excess of oxidant under environmentally friendly conditions in EtOAc for 16 h at room temperature. Noteworthy distinctions of this transformation are the simplicity, high selectivity, energy and cost efficiency, minimal amounts of non-hazardous waste, isolation of most of the products without the additional need for chromatographic purification, and simple scalability to gram reactions without deterioration of the yield. The reaction exhibited excellent green chemistry metrics with high atom economy (82.0%), actual atom economy (79.5%), reaction mass efficiency (79.7%), E-factor (16.48) and a very high EcoScale score (84.5). Competitive experiments demonstrated that electron-rich substrates are more reactive than their electron-poor counterparts. Furthermore, the Suzuki-Miyaura functionalization of N-trifluoromethylsulfaneylidene sulfoximine could be achieved depending on the conditions, resulting in coupling products with or without an introduced sulfoxide moiety. Sonogashira coupling of N-trifluoromethylsulfaneylidene sulfoximine furnished the expected acetylene derivative in high yield, and the reaction conditions are compatible with the newly introduced sulfaneylidene functionality. Bromine and nickel catalysts were also shown to be deprotecting agents of the sulfoxide group. A selected N-trifluoromethylsulfaneylidene sulfoximine demonstrated its stability in water in the presence of air and in dilute hydrochloric acid, while it converted back to the parent sulfoximine under basic conditions.
Collapse
Affiliation(s)
- Žan Testen
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia.
| | - Marjan Jereb
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, Večna pot 113, 1000 Ljubljana, Slovenia.
| |
Collapse
|
3
|
Kobayashi D, Uchida H, Ishibane M, Kurita E, Kirihara M, Kotsuchibashi Y. Fabrication of thermally cross-linked poly(methacrylic acid)-based sponges with nanolayered structures and their degradation. Polym J 2022. [DOI: 10.1038/s41428-022-00721-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
4
|
Zhang S, Li X, Li W, Rao W, Ge D, Shen Z, Chu X. Iron(0)-Mediated Henry-Type Reaction of Bromonitromethane with Aldehydes for the Efficient Synthesis of 2-Nitro-alkan-1-ols. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202107048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Wang R, Sun P, Jin W, Zhang Y, Wang B, Xia Y, Xue F, Abdukader A, Liu C. Efficient and eco-friendly oxidative cleavage C–C bonds of 1,2-diols to ketones: electrochemistry vs thermochemistry. Org Chem Front 2022. [DOI: 10.1039/d2qo00221c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two efficient methods for the oxidative cleavage C–C single bonds of vicinal tertiary diols by electrochemical and thermochemical strategies have been independently developed. The corresponding ketone products are smoothly assembled...
Collapse
|
6
|
Schmalz HG, Taspinar Ö, Stojadinovic VK, Neudörfl JM. A Concise Synthesis of 24,25-Dihydro-6-epi-Monanchosterol A. Synlett 2021. [DOI: 10.1055/a-1480-5225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractWe report the first synthetic entry to a steroid with an unusual bicyclo[4.3.1]dec-3-en-10-one A/B ring substructure as a close structural analogue of the anti-inflammatory monanchosterols. Under optimized conditions, regioselective cis-dihydroxylation of the Δ5-double bond of 7-dehydrocholesterol and subsequent Criegee oxidation yields the corresponding 5,6-seco-steroid as a pure Z-isomer which upon treatment with K2CO3 in MeOH diastereoselectively affords 24,25-dihydro-6-epi-monanchosterol A through intramolecular aldol addition (cyclization). The developed three-step sequence proceeds in 17% overall yield without the need of any protecting group. The title compound was characterized by X-ray crystallography.
Collapse
|
7
|
Kõllo M, Kasari M, Kasari V, Pehk T, Järving I, Lopp M, Jõers A, Kanger T. Designed whole-cell-catalysis-assisted synthesis of 9,11-secosterols. Beilstein J Org Chem 2021; 17:581-588. [PMID: 33747232 PMCID: PMC7940815 DOI: 10.3762/bjoc.17.52] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/17/2021] [Indexed: 01/29/2023] Open
Abstract
A method for the synthesis of 9,11-secosteroids starting from the natural corticosteroid cortisol is described. There are two key steps in this approach, combining chemistry and synthetic biology. Stereo- and regioselective hydroxylation at C9 (steroid numbering) is carried out using whole-cell biocatalysis, followed by the chemical cleavage of the C-C bond of the vicinal diol. The two-step method features mild reaction conditions and completely excludes the use of toxic oxidants.
Collapse
Affiliation(s)
- Marek Kõllo
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Marje Kasari
- Institute of Technology, University of Tartu, Nooruse 1, 50104 Tartu, Estonia
| | - Villu Kasari
- Institute of Technology, University of Tartu, Nooruse 1, 50104 Tartu, Estonia
| | - Tõnis Pehk
- National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Ivar Järving
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Margus Lopp
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Arvi Jõers
- Institute of Technology, University of Tartu, Nooruse 1, 50104 Tartu, Estonia
| | - Tõnis Kanger
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| |
Collapse
|
8
|
Kirihara M, Suzuki K, Nakakura K, Saito K, Nakamura R, Tujimoto K, Sakamoto Y, Kikkawa Y, Shimazu H, Kimura Y. Oxidation of fluoroalkyl alcohols using sodium hypochlorite pentahydrate [1]. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2020.109719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Uchiyama M, Miyamoto K, Okada T, Toyama T, Imamura S. Facile Preparation of 1-Hydroxy-1,2-Benziodoxol-3(1h)-one 1-Oxide (IBX) and Dess–Martin Reagent Using Sodium Hypochlorite under Carbon Dioxide. HETEROCYCLES 2021. [DOI: 10.3987/com-20-s(k)66] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Takizawa S, Kirihara M, Adachi K, Sakamoto Y, Tujimoto K, Yamahara S, Matsushima R, Namba Y, Kimura Y, Sato K, Kamada T. Chloroamidation of Alkenes Using Sodium Hypochlorite Pentahydrate and Its Application to Synthesis of Aziridines. HETEROCYCLES 2021. [DOI: 10.3987/com-20-s(k)68] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Kirihara M, Okada T, Asawa T, Sugiyama Y, Kimura Y. Organic Syntheses Using Sodium Hypochlorite Pentahydrate (NaOCl·5H<sub>2</sub>O) Crystals. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Masayuki Kirihara
- Department of Materials & Life Science, Shizuoka Institute of Science & Technology
| | - Tomohide Okada
- Market Development Department, Nippon Light Metal Co., Ltd
| | | | | | | |
Collapse
|
12
|
Hakuto N, Saito K, Kirihara M, Kotsuchibashi Y. Preparation of cross-linked poly(vinyl alcohol) films from copolymers with benzoxaborole and carboxylic acid groups, and their degradability in an oxidizing environment. Polym Chem 2020. [DOI: 10.1039/d0py00153h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Functionalized PVA films were prepared from copolymers with benzoxaborole and carboxyl groups.
Collapse
Affiliation(s)
- Nao Hakuto
- Department of Materials and Life Science
- Shizuoka Institute of Science and Technology
- Fukuroi
- Japan
| | - Katsuya Saito
- Department of Materials and Life Science
- Shizuoka Institute of Science and Technology
- Fukuroi
- Japan
| | - Masayuki Kirihara
- Department of Materials and Life Science
- Shizuoka Institute of Science and Technology
- Fukuroi
- Japan
| | - Yohei Kotsuchibashi
- Department of Materials and Life Science
- Shizuoka Institute of Science and Technology
- Fukuroi
- Japan
| |
Collapse
|