1
|
Xu Y, Zhang S, Huang D, Wu X. Reactions of alkynes with C-S bond formation: recent developments. Org Biomol Chem 2024; 22:6443-6484. [PMID: 39041389 DOI: 10.1039/d4ob00804a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Alkynes are important in organic synthesis. This review mainly focuses on recent advances (2013-2023) on alkynes with C-S bond formation, based on more than 30 types of sulfur reagents. The reactions of alkynes with various sulfur-containing compounds including RSSR (disulfides), RSH (thiols), S8 (elemental sulphur), alkynyl thioethers, RSCN, AgSCF3, K2S, Na2S, dithiane, RSCl, NFSI, RNCS, EtOCS2K, thiocarbamate, RSONH2, thiourea, sulfoxide, RSO2N3, CS2, RSO2NH2, RSO2NHNH2, RSO2Cl, RSO2Oar, RSO2SR', DABCO·(SO2)2, Na2S2O5, K2S2O5, RSO2H, RSO2Na and related compounds are discussed. Diverse mechanisms such as radical, electrophilic/nucleophilic addition, rearrangement, C-C bond cleavage, and CuAAC are discussed. The content is organized by substrates and reactivity patterns. We hope it will help in future research in this area.
Collapse
Affiliation(s)
- Yuemei Xu
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| | - Shujuan Zhang
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| | - Dayun Huang
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| | - Xiangmei Wu
- Department of Chemistry, Lishui University, No. 1, Xueyuan Road, Lishui City 323000, Zhejiang Province, P. R. China.
| |
Collapse
|
2
|
Doraghi F, Mohaghegh F, Qareaghaj OH, Larijani B, Mahdavi M. Synthesis of N-, O-, and S-heterocycles from aryl/alkyl alkynyl aldehydes. RSC Adv 2023; 13:13947-13970. [PMID: 37181524 PMCID: PMC10167737 DOI: 10.1039/d3ra01778h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023] Open
Abstract
In the field of heterocyclic synthesis, alkynyl aldehydes serve as privileged reagents for cyclization reactions with other organic compounds to construct a broad spectrum of N-, O-, and S-heterocycles. Due to the immense application of heterocyclic molecules in pharmaceuticals, natural products, and material chemistry, the synthesis of such scaffolds has received wide attention. The transformations occurred under metal-catalyzed, metal-free-promoted, and visible-light-mediated systems. The present review article highlights the progress made in this field over the past two decades.
Collapse
Affiliation(s)
- Fatemeh Doraghi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Farid Mohaghegh
- School of Chemistry, College of Science, University of Tehran Tehran Iran
| | | | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
3
|
Synthesis of Diversified Pyrazolo[3,4-b]pyridine Frameworks from 5-Aminopyrazoles and Alkynyl Aldehydes via Switchable C≡C Bond Activation Approaches. Molecules 2022; 27:molecules27196381. [PMID: 36234926 PMCID: PMC9571537 DOI: 10.3390/molecules27196381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
A cascade 6-endo-dig cyclization reaction was developed for the switchable synthesis of halogen and non-halogen-functionalized pyrazolo[3,4-b]pyridines from 5-aminopyrazoles and alkynyl aldehydes via C≡C bond activation with silver, iodine, or NBS. In addition to its wide substrate scope, the reaction showed good functional group tolerance as well as excellent regional selectivity. This new protocol manipulated three natural products, and the arylation, alkynylation, alkenylation, and selenization of iodine-functionalized products. These reactions demonstrated the potential applications of this new method.
Collapse
|
4
|
Panda J, Raiguru BP, Mishra M, Mohapatra S, Nayak S. Recent Advances in the Synthesis of Imidazo[1,2‐
a
]pyridines: A Brief Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202103987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bishnu P. Raiguru
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Mitali Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
5
|
Zhang Y, Chen R, Wang Z, Wang L, Ma Y. I 2-Catalyzed Three-Component Consecutive Reaction for the Synthesis of 3-Aroylimidazo[1,2- a]- N-Heterocycles. J Org Chem 2021; 86:6239-6246. [PMID: 33835809 DOI: 10.1021/acs.joc.1c00023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A convenient one-pot, three-component reaction has been developed for the synthesis of 3-aroylimidazo[1,2-a]-N-heterocycles from aryl ketones and 2-amino-N-heterocycles using dimethyl sulfoxide as a methylene donor. The reaction proceeds smoothly catalyzed by I2 in the presence of K2S2O8 and affords the desired products in moderate to good yields. This protocol offers significant superiority in accessing biologically active 3-aroylimidazo[1,2-a]-N-heterocycles with various substitution patterns.
Collapse
Affiliation(s)
- Yi Zhang
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P. R. China.,School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| | - Rener Chen
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P. R. China
| | - Zhiming Wang
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P. R. China
| | - Lei Wang
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P. R. China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou 318000, P. R. China.,School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, P. R. China
| |
Collapse
|
6
|
Tang Q, Yin X, Kuchukulla RR, Zeng Q. Recent Advances in Multicomponent Reactions with Organic and Inorganic Sulfur Compounds. CHEM REC 2021; 21:893-905. [DOI: 10.1002/tcr.202100026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Qinqin Tang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection College of Materials Chemistry & Chemical Engineering Chengdu University of Technology Chengdu 610059 China
| | - Xianjie Yin
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection College of Materials Chemistry & Chemical Engineering Chengdu University of Technology Chengdu 610059 China
| | - Ratnakar Reddy Kuchukulla
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection College of Materials Chemistry & Chemical Engineering Chengdu University of Technology Chengdu 610059 China
- College of Environment and Ecology Chengdu University of Technology Chengdu 610059 China
| | - Qingle Zeng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection College of Materials Chemistry & Chemical Engineering Chengdu University of Technology Chengdu 610059 China
| |
Collapse
|
7
|
Roslan II, Ng K, Alhooshani KR, Jaenicke S, Chuah G. In/Cu Catalyzed Multiple C−N/C−C Bond Formation via Multiple Bond Cleavage in a Three Component Synthesis of Arylimidazopyridine Carboxylates. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202000637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Irwan Iskandar Roslan
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Kian‐Hong Ng
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Khalid R. Alhooshani
- Chemistry Department King Fahd University of Petroleum and Minerals Dhahran 31261 Saudi Arabia
| | - Stephan Jaenicke
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Gaik‐Khuan Chuah
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|
8
|
Chen Q, Chen S, Wu H, Zeng X, Chen W, Sun G, Wang Z. Application of 2-Aminopyridines in the Synthesis of Five- and Six-Membered Azaheterocycles. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Liu T, Xu F, Liu X, Huang Z, Long L, Xu G, Xiao H, Chen Z. Switching the Regioselectivity Access to Pyrroles and Isoquinolines from Ketoxime Acetates and Ynals. ACS OMEGA 2020; 5:31473-31484. [PMID: 33324860 PMCID: PMC7726942 DOI: 10.1021/acsomega.0c05272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/12/2020] [Indexed: 05/28/2023]
Abstract
A novel formal [3+2] and [4+2] annulation of ketoxime acetates and ynals for the synthesis of pyrroles and isoquinolines has been developed. By simply switching the catalyst and solvent, the reaction proceeds via two pathways. The reactions are achieved under mild conditions with broad substrate scope and excellent regioselectivity.
Collapse
|
10
|
Vuillermet F, Bourret J, Pelletier G. Synthesis of Imidazo[1,2-a]pyridines: Triflic Anhydride-Mediated Annulation of 2H-Azirines with 2-Chloropyridines. J Org Chem 2020; 86:388-402. [DOI: 10.1021/acs.joc.0c02148] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Frédéric Vuillermet
- Department of Chemical Sciences, Paraza Pharma Inc., 2525 avenue Marie-Curie, Saint-Laurent, Québec H4S 2E1, Canada
| | - Joanick Bourret
- Department of Chemical Sciences, Paraza Pharma Inc., 2525 avenue Marie-Curie, Saint-Laurent, Québec H4S 2E1, Canada
| | - Guillaume Pelletier
- Department of Chemical Sciences, Paraza Pharma Inc., 2525 avenue Marie-Curie, Saint-Laurent, Québec H4S 2E1, Canada
| |
Collapse
|
11
|
Das D, Bhutia ZT, Panjikar PC, Chatterjee A, Banerjee M. A simple and efficient route to 2‐arylimidazo[1,2‐a]pyridines and zolimidine using automated grindstone chemistry. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Dharmendra Das
- Department of Chemistry BITS Pilani, K. K. Birla Goa Campus Zuarinagar Goa India
| | - Zigmee T. Bhutia
- Department of Chemistry BITS Pilani, K. K. Birla Goa Campus Zuarinagar Goa India
| | - Padmini C. Panjikar
- Department of Chemistry BITS Pilani, K. K. Birla Goa Campus Zuarinagar Goa India
- Pravatibai Chowgule College of Arts and Science (Autonomus) Margao Goa India
| | - Amrita Chatterjee
- Department of Chemistry BITS Pilani, K. K. Birla Goa Campus Zuarinagar Goa India
| | - Mainak Banerjee
- Department of Chemistry BITS Pilani, K. K. Birla Goa Campus Zuarinagar Goa India
| |
Collapse
|
12
|
Bhutia Z, Panjikar PC, Iyer S, Chatterjee A, Banerjee M. Iodine Promoted Efficient Synthesis of 2-Arylimidazo[1,2- a]pyridines in Aqueous Media: A Comparative Study between Micellar Catalysis and an "On-Water" Platform. ACS OMEGA 2020; 5:13333-13343. [PMID: 32548520 PMCID: PMC7288711 DOI: 10.1021/acsomega.0c01478] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/12/2020] [Indexed: 05/12/2023]
Abstract
In a new and environmentally sustainable approach, a series of 2-arylimidazo[1,2-a]pyridine derivatives were synthesized in aqueous media in the presence of iodine as a catalyst. The reaction proceeded by condensation of various aryl methyl ketones with 2-aminopyridines to afford 2-arylimidazo[1,2-a]pyridines in good overall yields. Although several of the reactions were efficiently performed "on water", the addition of a surfactant, namely, sodium dodecyl sulphate , was found effective in terms of substrate scope and yield enhancement. Both methods were successfully used for the gram-scale synthesis of a marketed drug, zolimidine. The simple experimental setup, water as "green" media, and inexpensive catalyst are some of the merits of this protocol.
Collapse
Affiliation(s)
- Zigmee
T. Bhutia
- Department
of Chemistry, BITS Pilani-K. K. Birla Goa
Campus, NH 17 B Bypass
Road, Zuarinagar, Sancoale 403726, Goa, India
| | - Padmini C. Panjikar
- Department
of Chemistry, BITS Pilani-K. K. Birla Goa
Campus, NH 17 B Bypass
Road, Zuarinagar, Sancoale 403726, Goa, India
- Parvatibai
Chowgule College of Arts & Science (Autonomous), Margao 403602, Goa, India
| | - Shruti Iyer
- Department
of Chemistry, BITS Pilani-K. K. Birla Goa
Campus, NH 17 B Bypass
Road, Zuarinagar, Sancoale 403726, Goa, India
| | - Amrita Chatterjee
- Department
of Chemistry, BITS Pilani-K. K. Birla Goa
Campus, NH 17 B Bypass
Road, Zuarinagar, Sancoale 403726, Goa, India
- . Phone: +91-832-2580-320. Fax: +91-832-255-7031
| | - Mainak Banerjee
- Department
of Chemistry, BITS Pilani-K. K. Birla Goa
Campus, NH 17 B Bypass
Road, Zuarinagar, Sancoale 403726, Goa, India
- . Phone: +91-832-2580-347. Fax: +91-832-255-7031
| |
Collapse
|
13
|
Liu HY, Chen Y, Hao LQ, Wang GD, Li HS, Xia CC. The synthesis of N, N′-disulfanediyl-bis( N′-(( E)-benzylidene)acetohydrazide) from ( E)- N′-benzylideneacetohydrazide and S 8. RSC Adv 2020; 10:41041-41046. [PMID: 35519175 PMCID: PMC9057724 DOI: 10.1039/d0ra08441g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 10/31/2020] [Indexed: 01/10/2023] Open
Abstract
Herein we report an oxidative coupling reaction for N–S/S–S bond formation from (E)-N′-benzylideneacetohydrazide and S8 to furnish substituted N,N′-disulfanediyl-bis(N′-((E)-benzylidene) acetohydrazide). It provides a direct approach for the synthesis of disulfides with good yields. Herein we report an oxidative coupling reaction for N–S/S–S bond formation substituted N,N′-disulfanediyl bis(N′-((E)-benzylidene)acetohydrazide). It provides a direct approach for the synthesis of disulfides with good yields.![]()
Collapse
Affiliation(s)
- Hong-Yan Liu
- School of Pharmacy College
- Institute of Pharmacology
- Shandong First Medical University
- Shandong Academy of Medical Sciences
- Tai'an
| | - Yu Chen
- School of Shandong Polytechnic College
- Jining
- China
| | - Li-Qiang Hao
- School of Pharmacy College
- Institute of Pharmacology
- Shandong First Medical University
- Shandong Academy of Medical Sciences
- Tai'an
| | - Guo-Dong Wang
- School of Pharmacy College
- Institute of Pharmacology
- Shandong First Medical University
- Shandong Academy of Medical Sciences
- Tai'an
| | - Hong-Shuang Li
- School of Pharmacy College
- Institute of Pharmacology
- Shandong First Medical University
- Shandong Academy of Medical Sciences
- Tai'an
| | - Cheng-Cai Xia
- School of Pharmacy College
- Institute of Pharmacology
- Shandong First Medical University
- Shandong Academy of Medical Sciences
- Tai'an
| |
Collapse
|