1
|
Zhang H, Guo X, Zhou D, Wen J, Tang Y, Wang J, Liu Y, Chen G, Li N. Design, Synthesis of (±)-Millpuline A, and Biological Evaluation for the Lung Cell Protective Effects through SRC. ChemMedChem 2023; 18:e202300219. [PMID: 37704587 DOI: 10.1002/cmdc.202300219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
In this study, a visible-light-induced intermolecular [2+2] photocycloaddition reaction based on flavonoids was constructed to address the problems of low yield, poor physicochemical properties, and lack of target definition in total synthesis of (±)-millpuline A whose bioactivity remains unknown. As a result, 20 derivatives were synthesized for bioactivity evaluation. Consequently, lung cell protective effects of (±)-millpuline A and compound B13 a were revealed for the first time and the crucial role of stereoconfiguration of the cyclobutane moiety in their protective effects against NNK in normal lung cells was demonstrated. Moreover, through target prediction and experimental verification in MLE-12 cells, SRC was determined to be the target of (±)-millpuline A regarding its protective effect in NNK-induced lung cell injury. Results from RT-Q-PCR and HTRF experiments verified that (±)-millpuline A could repress SRC activity through a transcriptional mechanism but not acting as an inhibitor to directly bind to and thereby inhibit SRC protein. The results in this paper are informative for the further development of visible light-catalyzed cycloaddition of flavonoids and lay a scientific foundation for understanding the bioactivity and underlying mechanism of (±)-millpuline A and other structurally similar natural skeletons.
Collapse
Affiliation(s)
- Heng Zhang
- School of Traditional Chinese Materia Medica Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Xiao Guo
- School of Traditional Chinese Materia Medica Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Di Zhou
- School of Traditional Chinese Materia Medica Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Jiatong Wen
- School of Traditional Chinese Materia Medica Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Yingzhan Tang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Jian Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Yang Liu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Gang Chen
- School of Traditional Chinese Materia Medica Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Ning Li
- School of Traditional Chinese Materia Medica Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| |
Collapse
|
2
|
Golfmann M, Glagow L, Giakoumidakis A, Golz C, Walker JCL. Organophotocatalytic [2+2] Cycloaddition of Electron-Deficient Styrenes. Chemistry 2023; 29:e202202373. [PMID: 36282627 PMCID: PMC10100360 DOI: 10.1002/chem.202202373] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 11/05/2022]
Abstract
A visible-light organophotocatalytic [2+2] cycloaddition of electron-deficient styrenes is described. Photocatalytic [2+2] cycloadditions are typically performed with electron-rich styrene derivatives or α,β-unsaturated carbonyl compounds, and with transition-metal-based catalysts. We have discovered that an organic cyanoarene photocatalyst is able to deliver high-value cyclobutane products bearing electron-deficient aryl substituents in good yields. A range of electron-deficient substituents are tolerated, and both homodimerisations and intramolecular [2+2] cycloadditions to fused bicyclic systems are available by using this methodology.
Collapse
Affiliation(s)
- Maxim Golfmann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Louis Glagow
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Antonios Giakoumidakis
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany.,University of Ioannina, Department of Chemistry, Section of Organic Chemistry and Biochemistry, 45110, Ioannina, Greece
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Johannes C L Walker
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
3
|
Mao R, Li W, Jia P, Ding H, Teka T, Zhang L, Fu Z, Fu X, Kaushal S, Dou Z, Han L. An efficient and sensitive method on the identification of unsaturated fatty acids in biosamples: Total lipid extract from bovine liver as a case study. J Chromatogr A 2022; 1675:463176. [DOI: 10.1016/j.chroma.2022.463176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 12/14/2022]
|
4
|
Zhang Y, Wei Y, Shi M. Rapid Construction of Polysubstituted “Caged” Oxa-Bishomocubane Framework from Vinylidenecyclopropanes through a Sequential Dual Catalysis of Copper(I) and Visible-Light-Induced Photosensitization. Org Chem Front 2022. [DOI: 10.1039/d2qo00508e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This context describes a sequential dual catalytic transformation involving copper(I)-catalyzed cyclization/isomerization/migration-dimerization and visible-light photo-induced intramolecular [2+2] cycloaddition of vinylidenecyclopropanes for the rapid construction of polysubstituted “caged” oxa-bishomocubane products. The reaction...
Collapse
|
5
|
Feng X, Ren Y, Jiang H. Metal-bipyridine/phenanthroline-functionalized porous crystalline materials: Synthesis and catalysis. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213907] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
6
|
Jin Y, Jiang H, Tang X, Zhang W, Liu Y, Cui Y. Coordination-driven self-assembly of anthraquinone-based metal-organic cages for photocatalytic selective [2 + 2] cycloaddition. Dalton Trans 2021; 50:8533-8539. [PMID: 34075985 DOI: 10.1039/d1dt00652e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Visible-light-promoted [2 + 2] cycloaddition provides a straightforward and efficient way to produce cyclobutanes, which are the core skeleton in commercial pharmaceuticals and fine chemicals. However, the control of the conformation to produce syn-head-to-head (syn-HH) cyclobutanes remains a grand challenge. In this work, we report the design and synthesis of anthraquinone-based metal-organic cages (MOCs) for the [2 + 2] photocycloaddition of chalcones to generate syn-HH cyclobutanes. Guided by the coordination-driven self-assembly strategy, one D2 and three D4h symmetric MOCs are constructed from anthraquinone-derived dicarboxylate linkers and 4-tert-butylsulfonylcalixarene capped tetrametallic clusters. The porous cages feature large hydrophobic cavities and photoactive anthraquinone units and are demonstrated to be efficient and recyclable photocatalysts for [2 + 2] cycloaddition of chalcones. The syn-HH diastereomers are obtained with up to 13 : 1 diastereomeric ratio (dr). The cage catalysts provide a well-defined confined space to accommodate the substrates, thus leading to enhanced selectivity relative to the free anthraquinone catalyst.
Collapse
Affiliation(s)
- Yao Jin
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China.
| | | | | | | | | | | |
Collapse
|
7
|
Heteroleptic copper(I) complexes as energy transfer photocatalysts for the intermolecular [2 + 2] photodimerization of chalcones, cinnamates and cinnamamides. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Zhou TP, Zhong F, Wu Y, Liao RZ. Regioselectivity and stereoselectivity of intramolecular [2 + 2] photocycloaddition catalyzed by chiral thioxanthone: a quantum chemical study. Org Biomol Chem 2021; 19:1532-1540. [DOI: 10.1039/d0ob02330b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Chiral photosensitizer-catalyzed stereoselective olefin cyclization has shown its significance in organic synthesis.
Collapse
Affiliation(s)
- Tai-Ping Zhou
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica
- Hubei Key Laboratory of Materials Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
| | - Fangrui Zhong
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica
- Hubei Key Laboratory of Materials Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
| | - Yuzhou Wu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica
- Hubei Key Laboratory of Materials Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
| | - Rong-Zhen Liao
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage
- Ministry of Education
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica
- Hubei Key Laboratory of Materials Chemistry and Service Failure
- School of Chemistry and Chemical Engineering
| |
Collapse
|
9
|
Hussein AA, Ma Y, Al‐Yasari A. Hypervalent Iodine‐Mediated Styrene Hetero‐ and Homodimerization Initiation Proceeds with Two‐Electron Reductive Cleavage. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Yumiao Ma
- BSJ Institue, Haidian 100084 Beijing People's Republic of China
| | - Ahmed Al‐Yasari
- School of Chemistry University of East Anglia NR4 7TJ Norwich United Kingdom
- Department of Chemistry Faculty of Sciences University of Kerbala Kerbala Iraq
| |
Collapse
|