1
|
Nong ZS, Wang PS, Zhou QL, Gong LZ. Palladium-Catalyzed Branch-Selective Allylic C-H Amination Enabled by Nucleophile Coordination. Org Lett 2024; 26:8481-8485. [PMID: 39331493 DOI: 10.1021/acs.orglett.4c02935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Regiochemical control is a central subject in the field of synthetic chemistry. Here we unveil an innovative approach for the branch-selective allylic C-H amination of α-alkenes with amine nucleophiles facilitated by phosphoramidite-palladium catalysis. A diverse array of α-alkenes has been effectively utilized to produce a variety of structurally distinct allylamines with moderate to excellent regioselectivity. Furthermore, the asymmetric version of this reaction is feasible through the use of chiral phosphoramidite ligands, albeit with currently modest enantioselectivity.
Collapse
Affiliation(s)
- Zhong-Sheng Nong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Pu-Sheng Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qi-Lin Zhou
- Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Liu-Zhu Gong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Obenschain DC, Tabor JR, Michael FE. Metal-Free Intermolecular Allylic C–H Amination of Alkenes Using Primary Carbamates. ACS Catal 2023. [DOI: 10.1021/acscatal.3c00807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Derek C. Obenschain
- Department of Chemistry, University of Washington, B ox 351700, Seattle, Washington 98195-1700, United States
| | - John R. Tabor
- Department of Chemistry, University of Washington, B ox 351700, Seattle, Washington 98195-1700, United States
| | - Forrest E. Michael
- Department of Chemistry, University of Washington, B ox 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
3
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 148] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
4
|
Ranu B, Egorov I, Mukherjee A, Santra S, Kopchuk D, Kovalev I, Zyryanov G, Majee A, Chupakhin O, Liu Y. Mechanochemically Induced Cross Dehydrogenative Coupling Reactions under Ball Milling. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Ilya Egorov
- Ural Federal University named after the first President of Russia B N Yeltsin RUSSIAN FEDERATION
| | - Anindita Mukherjee
- Ural'skij federal'nyj universitet imeni pervogo Prezidenta Rossii B N El'cina RUSSIAN FEDERATION
| | - Sougata Santra
- Ural Federal University named after the first President of Russia B N Yeltsin RUSSIAN FEDERATION
| | - Dmitry Kopchuk
- Institute of Organic Synthesis UB RAS RUSSIAN FEDERATION
| | | | - Grigory Zyryanov
- Ural Federal University named after the first President of Russia B N Yeltsin RUSSIAN FEDERATION
| | | | - Oleg Chupakhin
- Ural Federal University named after the first President of Russia B N Yeltsin RUSSIAN FEDERATION
| | | |
Collapse
|
5
|
Theoretical studies on Mn-catalyzed intermolecular allylic C-H aminations of internal olefins: mechanism, chemo- and regioselectivity. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Lin D, Jiang S, Zhang A, Wu T, Qian Y, Shao Q. Structural derivatization strategies of natural phenols by semi-synthesis and total-synthesis. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:8. [PMID: 35254538 PMCID: PMC8901917 DOI: 10.1007/s13659-022-00331-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/15/2022] [Indexed: 05/08/2023]
Abstract
Structural derivatization of natural products has been a continuing and irreplaceable source of novel drug leads. Natural phenols are a broad category of natural products with wide pharmacological activity and have offered plenty of clinical drugs. However, the structural complexity and wide variety of natural phenols leads to the difficulty of structural derivatization. Skeleton analysis indicated most types of natural phenols can be structured by the combination and extension of three common fragments containing phenol, phenylpropanoid and benzoyl. Based on these fragments, the derivatization strategies of natural phenols were unified and comprehensively analyzed in this review. In addition to classical methods, advanced strategies with high selectivity, efficiency and practicality were emphasized. Total synthesis strategies of typical fragments such as stilbenes, chalcones and flavonoids were also covered and analyzed as the supplementary for supporting the diversity-oriented derivatization of natural phenols.
Collapse
Affiliation(s)
- Ding Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China.
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China.
| | - Senze Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China
| | - Ailian Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China
| | - Tong Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China
| | - Yongchang Qian
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China
| | - Qingsong Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China.
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, 311300, China.
| |
Collapse
|
7
|
Maloney TP, Dohoda AF, Zhu AC, Michael FE. Stereoretentive and Regioselective Selenium-catalyzed Intermolecular Propargylic C-H Amination of Alkynes. Chem Sci 2022; 13:2121-2127. [PMID: 35308840 PMCID: PMC8849008 DOI: 10.1039/d1sc07067c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/26/2022] [Indexed: 11/21/2022] Open
Abstract
Herein we report an intermolecular propargylic C–H amination of alkynes. This reaction is operationally convenient and requires no transition metal catalysts or additives. Terminal, silyl, and internal alkynes bearing a wide range of functional groups can be aminated in high yields. The regioselectivity of amination for unsymmetrical internal alkynes is strongly influenced by substitution pattern (tertiary > secondary > primary) and by relatively remote heteroatomic substituents. We demonstrate that amination of alkynes bearing α-stereocenters occurs with retention of configuration at the newly-formed C–N bond. Competition experiments between alkynes, kinetic isotope effects, and DFT calculations are performed to confirm the mechanistic hypothesis that initial ene reaction of a selenium bis(imide) species is the rate- and product-determining step. This ene reaction has a transition state that results in substantial partial positive charge development at the carbon atom closer to the amination position. Inductive and/or hyperconjugative stabilization or destabilization of this positive charge explains the observed regioselectivities. Selenium catalysis enables a general intermolecular propargylic C–H amination of alkynes. The concerted mechanism gives rise to high regioselectivity for the more electron-rich end of the alkyne and retention of the C–H propargylic stereocenter.![]()
Collapse
Affiliation(s)
- T Parker Maloney
- University of Washington, Department of Chemistry Box 351700 Seattle Washington 98195-1700 USA
| | - Alexander F Dohoda
- University of Washington, Department of Chemistry Box 351700 Seattle Washington 98195-1700 USA
| | - Alec C Zhu
- University of Washington, Department of Chemistry Box 351700 Seattle Washington 98195-1700 USA
| | - Forrest E Michael
- University of Washington, Department of Chemistry Box 351700 Seattle Washington 98195-1700 USA
| |
Collapse
|
8
|
Du B, Ouyang Y, Chen Q, Yu WY. Thioether-Directed NiH-Catalyzed Remote γ-C(sp 3)-H Hydroamidation of Alkenes by 1,4,2-Dioxazol-5-ones. J Am Chem Soc 2021; 143:14962-14968. [PMID: 34496211 DOI: 10.1021/jacs.1c05834] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A NiH-catalyzed thioether-directed cyclometalation strategy is developed to enable remote methylene C-H bond amidation of unactivated alkenes. Due to the preference for five-membered nickelacycle formation, the chain-walking isomerization initiated by the NiH insertion to an alkene can be terminated at the γ-methylene site remote from the alkene moiety. By employing 2,9-dibutyl-1,10-phenanthroline (L4) as the ligand and dioxazolones as the reagent, the amidation occurs at the γ-C(sp3)-H bonds to afford the amide products in up to 90% yield (>40 examples) with remarkable regioselectivity (up to 24:1 rr).
Collapse
Affiliation(s)
- Bingnan Du
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Yuxin Ouyang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Qishu Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Wing-Yiu Yu
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
9
|
Wood DP, Guan W, Lin S. Titanium and Cobalt Bimetallic Radical Redox Relay for the Isomerization of N-Bz Aziridines to Allylic Amides. SYNTHESIS-STUTTGART 2021; 53:4213-4220. [PMID: 34764520 PMCID: PMC8579959 DOI: 10.1055/s-0037-1610779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Herein a bimetallic radical redox-relay strategy is employed to generate alkyl radicals under mild conditions with titanium(III) catalysis and terminated via hydrogen atom transfer with cobalt(II) catalysis to enact base-free isomerizations of N-Bz aziridines to N-Bz allylic amides. This reaction provides an alternative strategy for the synthesis of allylic amides from alkenes via a three-step sequence to accomplish a formal transpositional allylic amination.
Collapse
Affiliation(s)
- Devin P Wood
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Weiyang Guan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
10
|
Ma N, Liu Z, Huang J, Dang Y. Mechanistic studies of Cp*Ir(III)/Cp*Rh(III)-catalyzed branch-selective allylic C-H amidation: why is Cp*Ir(III) superior to Cp*Rh(III)? Org Biomol Chem 2021; 19:3850-3858. [PMID: 33949601 DOI: 10.1039/d1ob00446h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Density functional theory calculations have revealed the mechanism and origins of the reactivity and regioselectivity of the Cp*Ir(iii)/Cp*Rh(iii)-catalyzed allylic C-H amidation of alkenes and dioxazolones. Generally, the catalytic cycle consists of alkene coordination, C(sp3)-H activation, dioxazolone oxidative addition, reductive elimination and proto-demetallation to give the final amidation product. The C-H activation is found to be the rate-determining step, and it controls the reactivity of the reaction. For the Cp*Ir(iii)-catalyzed system, the C-H activation undergoes an Ir(iii)-assisted proton transfer process with a low energy barrier, elucidating its high reactivity. In contrast, the C-H activation step is more like a direct deprotonation in the Cp*Rh(iii)-catalyzed system, which is responsible for its higher barrier and lower reactivity. The branched-selectivity arises from the electronic effect of the alkyl group on the charge distribution over the allylic moiety. Herein, iridium(v) polarizes the allylic group greater than that of the rhodium(v) system, which accounts for its good regioselectivity. The mechanistic insights will be useful for the further development of transition metal-catalyzed selective C-H amination reactions.
Collapse
Affiliation(s)
- Nan Ma
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China. and School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Zheyuan Liu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Jianhui Huang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| | - Yanfeng Dang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
11
|
Mondal S, Pinkert T, Daniliuc CG, Glorius F. Regioselektive und redox‐neutrale Cp*Ir
III
‐katalysierte allylische C‐H‐Alkinylierung. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shobhan Mondal
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Tobias Pinkert
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| | - Frank Glorius
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Deutschland
| |
Collapse
|
12
|
Strategic evolution in transition metal-catalyzed directed C–H bond activation and future directions. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213683] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Mondal S, Pinkert T, Daniliuc CG, Glorius F. Regioselective and Redox‐Neutral Cp*Ir
III
‐Catalyzed Allylic C−H Alkynylation. Angew Chem Int Ed Engl 2021; 60:5688-5692. [DOI: 10.1002/anie.202015249] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/22/2020] [Indexed: 01/09/2023]
Affiliation(s)
- Shobhan Mondal
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Tobias Pinkert
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Frank Glorius
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
14
|
Huang F, Tian X, Hou F, Xu Y, Lu G. Electrostatic repulsion-controlled regioselectivity in nitrene-mediated allylic C–H amidations. Org Chem Front 2021. [DOI: 10.1039/d1qo01018b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The difference of repulsive electrostatic interactions between nitrene N and allyl carbon atoms is the dominant factor affecting the regioselectivity in metal nitrenoid-catalyzed allylic C–H amidations.
Collapse
Affiliation(s)
- Fang Huang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xiaoxiao Tian
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Fangao Hou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Yaping Xu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
15
|
Chu Y, Bi S, Wu X, Jiang Y, Liu Y, Ling B, Yuan XA. Mechanism, bonding nature of metal-nitrenoid, and selectivity for a nitrene-participating three-component carboamination of dienes: A DFT study. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Kazerouni AM, McKoy QA, Blakey SB. Recent advances in oxidative allylic C-H functionalization via group IX-metal catalysis. Chem Commun (Camb) 2020; 56:13287-13300. [PMID: 33015689 DOI: 10.1039/d0cc05554a] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Allylic substitution, pioneered by the work of Tsuji and Trost, has been an invaluable tool in the synthesis of complex molecules for decades. An attractive alternative to allylic substitution is the direct functionalization of allylic C-H bonds of unactivated alkenes, thereby avoiding the need for prefunctionalization. Significant early advances in allylic C-H functionalization were made using palladium catalysis. However, Pd-catalyzed reactions are generally limited to the functionalization of terminal olefins with stabilized nucleophiles. Insights from Li, Cossy, and Tanaka demonstrated the utility of RhCpx catalysts for allylic functionalization. Since these initial reports, a number of key intermolecular Co-, Rh-, and Ir-catalyzed allylic C-H functionalization reactions have been reported, offering significant complementarity to the Pd-catalyzed reactions. Herein, we report a summary of recent advances in intermolecular allylic C-H functionalization via group IX-metal π-allyl complexes. Mechanism-driven development of new catalysts is highlighted, and the potential for future developments is discussed.
Collapse
Affiliation(s)
- Amaan M Kazerouni
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, USA.
| | | | | |
Collapse
|
17
|
Teh WP, Obenschain DC, Black BM, Michael FE. Catalytic Metal-free Allylic C-H Amination of Terpenoids. J Am Chem Soc 2020; 142:16716-16722. [PMID: 32909748 DOI: 10.1021/jacs.0c06997] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The selective replacement of C-H bonds in complex molecules, especially natural products like terpenoids, is a highly efficient way to introduce new functionality and/or couple fragments. Here, we report the development of a new metal-free allylic amination of alkenes that allows the introduction of a wide range of nitrogen functionality at the allylic position of alkenes with unique regioselectivity and no allylic transposition. This reaction employs catalytic amounts of selenium in the form of phosphine selenides or selenoureas. Simple sulfonamides and sulfamates can be used directly in the reaction without the need to prepare isolated nitrenoid precursors. We demonstrate the utility of this transformation by aminating a large set of terpenoids in high yield and regioselectivity.
Collapse
Affiliation(s)
- Wei Pin Teh
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Derek C Obenschain
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Blaise M Black
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Forrest E Michael
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
18
|
Wang YM, Durham AC, Wang Y. Redox-Neutral Propargylic C–H Functionalization by Using Iron Catalysis. Synlett 2020. [DOI: 10.1055/s-0040-1707271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractIn spite of their rich stoichiometric chemistry, cyclopentadienyliron(II) dicarbonyl complexes are rarely used as catalysts in organic synthesis. Inspired by precedents in the chemistry of cationic olefin complexes and neutral allylmetal species, our group has developed a coupling of alkynes or alkenes with aldehydes and other carbonyl electrophiles to give homopropargylic and homoallylic alcohols, respectively, by using a substituted cyclopentadienyliron(II) dicarbonyl complex as the catalyst. In this article, we first contextualize this development within the conceptual background of C–H functionalization chemistry and relative to key stoichiometric precedents. We then give an account of our group’s discovery and development of the catalytic α-functionalization of alkenes and alkynes with electrophilic reagents.IntroductionPreliminary Stoichiometric WorkHydroxyalkylation Development and ScopeConclusions and Future Directions
Collapse
|
19
|
Manoharan R, Jeganmohan M. Recent Advancements in Allylic C(sp
3
)–H Functionalization of Olefins Catalyzed by Rh(III) or Ir(III) Complexes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000936] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ramasamy Manoharan
- School of Chemistry and Chemical Engineering Shandong University No. 27 Shanda South Road 250100 Jinan China
| | | |
Collapse
|
20
|
Farr CMB, Kazerouni AM, Park B, Poff CD, Won J, Sharp KR, Baik MH, Blakey SB. Designing a Planar Chiral Rhodium Indenyl Catalyst for Regio- and Enantioselective Allylic C–H Amidation. J Am Chem Soc 2020; 142:13996-14004. [DOI: 10.1021/jacs.0c07305] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Caitlin M. B. Farr
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Amaan M. Kazerouni
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Bohyun Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Christopher D. Poff
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Joonghee Won
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Kimberly R. Sharp
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Simon B. Blakey
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
21
|
Ellman JA, Ackermann L, Shi BF. The Breadth and Depth of C-H Functionalization. J Org Chem 2020; 84:12701-12704. [PMID: 31623443 DOI: 10.1021/acs.joc.9b02663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | - Lutz Ackermann
- Institut fuer Organische und Biomolekulare Chemie , Georg-August-Universität Göttingen
| | | |
Collapse
|
22
|
Harris RJ, Park J, Nelson TAF, Iqbal N, Salgueiro DC, Bacsa J, MacBeth CE, Baik MH, Blakey SB. The Mechanism of Rhodium-Catalyzed Allylic C-H Amination. J Am Chem Soc 2020; 142:5842-5851. [PMID: 32119537 DOI: 10.1021/jacs.0c01069] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Herein, the mechanism of catalytic allylic C-H amination reactions promoted by Cp*Rh complexes is reported. Reaction kinetics experiments, stoichiometric studies, and DFT calculations demonstrate that the allylic C-H activation to generate a Cp*Rh(π-allyl) complex is viable under mild reaction conditions. The role of external oxidants in the catalytic cycle is elucidated. Quantum mechanical calculations, stoichiometric reactions, and cyclic voltammetry experiments concomitantly support an oxidatively induced reductive elimination process of the allyl fragment with an acetate ligand proceeding through a Rh(IV) intermediate. Stoichiometric oxidation and bulk electrolysis of the proposed π-allyl intermediate are also reported to support these analyses. Lastly, evidence supporting the amination of an allylic acetate intermediate is presented. We show that Cp*Rh(III)2+ behaves as a Lewis acid catalyst to complete the allylic amination reaction.
Collapse
Affiliation(s)
- Robert J Harris
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jiyong Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Taylor A F Nelson
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Nafees Iqbal
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Daniel C Salgueiro
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - John Bacsa
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Cora E MacBeth
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Simon B Blakey
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
23
|
Nelson TAF, Hollerbach MR, Blakey SB. Allylic C–H functionalization via group 9 π-allyl intermediates. Dalton Trans 2020; 49:13928-13935. [DOI: 10.1039/d0dt02313b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This perspective presents an analysis of how reagent choice impacts mechanism and regioselectivity in group 9-catalysed allylic C–H functionalization.
Collapse
|