1
|
Chen K, Ma Y, Lin Y, Li JY, Shi H. Ruthenium/η 5-Phenoxo-Catalyzed Amination of Phenols with Amines. J Am Chem Soc 2024; 146:15833-15842. [PMID: 38819396 DOI: 10.1021/jacs.4c02089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Ruthenium(II) complexes are known to form η6-arene complexes with benzene-containing compounds through π-coordination, a property extensively utilized to initiate reactions not typically observed with free arenes. A prime example is nucleophilic aromatic substitution, where ruthenium-complexed aryl halides undergo nucleophilic attack, allowing the direct synthesis of diverse aromatic compounds by displacing halides with nucleophiles. However, this activation relies on the electron-withdrawing effect of the Ru(II) species, as well as is hindered by the resistance of η6-arenes to arene exchange. In the previous pursuit of catalysis, the emphasis of ligand design has centered on promoting arene exchange. In this study, we extended the ruthenium activation strategy to umpolung substitution reactions of phenols. The amination proceeds through a direct condensation between phenols and amines, with a key intermediate identified as [bis(η5-phenoxo)Ru], which is in situ generated from a commercially available ruthenium catalyst. In comparison with the well-studied cyclopentadienyl (Cp) type ligands, we demonstrated that an η5-phenoxo motif, as a superior alternative to Cp, contributes to the amination of phenols in two crucial ways: its less electron-donating nature enhances the withdrawing effect of the ruthenium unit, facilitating substitution on the phenol complex; its distinctive behavior in arene exchange allows for conducting the amination with a catalytic amount of metal. Additionally, hydrogen bonding, wherein the phenoxo serves as the acceptor, was found to be important for the substitution. The versatility of this ruthenium-catalyzed amination was validated by performing reactions with a diverse array of phenols exhibiting various electronic properties, in combination with a wide range of primary amines. This work exemplifies the expansion of the scope of π-coordination activation in catalysis through innovative ligand development.
Collapse
Affiliation(s)
- Kai Chen
- Department of Chemistry, Zhejiang University, Hangzhou ,Zhejiang Province 310027, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
| | - Yixuan Ma
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
| | - Yunzhi Lin
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
| | - Jia-Yue Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
| | - Hang Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
- Institute of Natural Sciences,Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou ,Zhejiang Province 310024, China
| |
Collapse
|
2
|
Zeng Z, Deng Y, Li L, Li C, Zhong M. Hydrogen Transfer Coupling with 100% Atom Economy: Synthesis of 2-Indolyltetrahydronaphthyridine Derivatives. J Org Chem 2022; 87:12257-12264. [PMID: 36045006 DOI: 10.1021/acs.joc.2c01436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An iridium-catalyzed hydrogen transfer strategy, enabling straightforward access to tetrahydropyridine derivatives from aryl-1,8-naphthyridines and indolines was developed. This method has unprecedented advantages, including high step economy. In addition, it does not produce any byproducts or require an external high-pressure H2 gas source. The method offers an important platform for the transformation of 1,8-naphthyridines and indolines into functionalized products.
Collapse
Affiliation(s)
- Zheng Zeng
- Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Yiqiu Deng
- Affiliated Hospital of Guilin Medical University, Guilin 541001, China.,College of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Lanyu Li
- Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Chungang Li
- The 926th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Kaiyuan 661600, Yunnan, China
| | - Mingli Zhong
- College of Pharmacy, Guilin Medical University, Guilin 541199, China
| |
Collapse
|
3
|
Copper‐mediated intermolecular C−H aminohalogenation of indoles at room temperature. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Xu S, Cai Z, Liao C, Shi J, Wen T, Xie F, Zhu Z, Chen X. Nitrogen-Doped Carbon Supported Nanocobalt Catalyst for Hydrogen-Transfer Dearomative Coupling of Quinolinium Salts and Tetrahydroquinolines. Org Lett 2022; 24:5209-5213. [PMID: 35833649 DOI: 10.1021/acs.orglett.2c02057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A nitrogen-doped carbon supported nanocobalt catalyst was developed and successfully applied for the hydrogen-transfer coupling of quinolinium salts and tetrahydroquinoline compounds. The selective coupling of the C6 sites of tetrahydroquinolines (THQs) with the α sites of quinoline salts generated a series of 2-substituted N-alkyl-tetrahydroquinolines. This catalytic conversion method, which can be employed to synthesize various functionalized tetrahydroquinolines, has several advantages that include excellent hydrogen transfer selectivity, a reusable and inexpensive catalyst, and environmental friendliness.
Collapse
Affiliation(s)
- Shengting Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Zechun Cai
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Chuyi Liao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Jianyi Shi
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Tingting Wen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Feng Xie
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Zhongzhi Zhu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xiuwen Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
5
|
Mu D, Li Z, Yu S, Liu S. Wastewater treatment via hydro-de-heteroatoms using hydrogen donors. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Chen K, Kang QK, Li Y, Wu WQ, Zhu H, Shi H. Catalytic Amination of Phenols with Amines. J Am Chem Soc 2022; 144:1144-1151. [PMID: 35015956 DOI: 10.1021/jacs.1c12622] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Given the wide prevalence and ready availability of both phenols and amines, aniline synthesis through direct coupling between these starting materials would be extremely attractive. Herein, we describe a rhodium-catalyzed amination of phenols, which provides concise access to diverse anilines, with water as the sole byproduct. The arenophilic rhodium catalyst facilitates the inherently difficult keto-enol tautomerization of phenols by means of π-coordination, allowing for the subsequent dehydrative condensation with amines. We demonstrate the generality of this redox-neutral catalysis by carrying out reactions of a large array of phenols with various electronic properties and a wide variety of primary and secondary amines. Several examples of late-stage functionalization of structurally complex bioactive molecules, including pharmaceuticals, further illustrate the potential broad utility of the method.
Collapse
Affiliation(s)
- Kai Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province. China
| | - Qi-Kai Kang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province. China
| | - Yuntong Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province. China
| | - Wen-Qiang Wu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province. China
| | - Hui Zhu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province. China
| | - Hang Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province. China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
7
|
Zhang Y, Huang Y, Yu K, Zhang X, Yu W, Tang J, Tian Y, Wei W, Zhang Z, Liang T. Iron–iodine co-catalysis towards tandem C–N/C–C bond formation: one-pot regioselective synthesis of 2-amino-3-alkylindoles. Org Chem Front 2022. [DOI: 10.1039/d2qo01329k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient intermolecular C2,3-H aminoalkylation of indoles with 9H-xanthenes and azoles via iron–iodine co-catalyzed tandem C–N/C–C bond formation has been developed.
Collapse
Affiliation(s)
- Yingying Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Yating Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Kewei Yu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Xiaoxiang Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Wenhua Yu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Jiale Tang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Yiran Tian
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Wanxing Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Zhuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, P. R. China
| | - Taoyuan Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
8
|
He Q, Zhong M, Chen Z, Liao C, Xie F, Zhu Z, Chen X. Site‐Selective 1,4‐Difunctionalization of Nitrogen Heteroaromatics for Constructing Vinylidene Heterocycles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qianlin He
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
| | - Mingli Zhong
- College of Pharmacy Guilin Medical University Guilin 541199 People's Republic of China
| | - Zhichao Chen
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
| | - Chuyi Liao
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
| | - Feng Xie
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
| | - Zhongzhi Zhu
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
| | - Xiuwen Chen
- School of Biotechnology and Health Sciences Wuyi University Jiangmen 529020 People's Republic of China
| |
Collapse
|
9
|
Oeser P, Koudelka J, Petrenko A, Tobrman T. Recent Progress Concerning the N-Arylation of Indoles. Molecules 2021; 26:molecules26165079. [PMID: 34443667 PMCID: PMC8402097 DOI: 10.3390/molecules26165079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/16/2022] Open
Abstract
This review summarizes the current state-of-the-art procedures in terms of the preparation of N-arylindoles. After a short introduction, the transition-metal-free procedures available for the N-arylation of indoles are briefly discussed. Then, the nickel-catalyzed and palladium-catalyzed N-arylation of indoles are both discussed. In the next section, copper-catalyzed procedures for the N-arylation of indoles are described. The final section focuses on recent findings in the field of biologically active N-arylindoles.
Collapse
|
10
|
Ou Y, Yang T, Tang N, Yin SF, Kambe N, Qiu R. Photo-Induced N-N Coupling of o-Nitrobenzyl Alcohols and Indolines To Give N-Aryl-1-amino Indoles. Org Lett 2021; 23:6417-6422. [PMID: 34355914 DOI: 10.1021/acs.orglett.1c02227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel method to synthesize N-aryl-1-amino indoles was established by the photoinduced N-N coupling reaction. This protocol is by treatment of o-nitrobenzyl alcohols and indolines in the presence of TEAI and acetic acid with a 24 W ultraviolet (UV) light-emitting diode (LED) (385-405 nm) irradiation. The products bearing an aldehyde group can be further transformed to fluorescent probes based on Rhodamine 6G derivative 11, which shows a high specificity and sensitivity for Fe3+.
Collapse
Affiliation(s)
- Yifeng Ou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Tianbao Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Niu Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| | - Nobuaki Kambe
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China.,The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, People's Republic of China
| |
Collapse
|
11
|
He Q, Xie F, Xia C, Liang W, Guo Z, Zhu Z, Li Y, Chen X. Copper-Catalyzed Selective 1,2-Difunctionalization of N-Heteroaromatics through Cascade C-N/C═C/C═O Bond Formation. Org Lett 2020; 22:7976-7980. [PMID: 32997943 DOI: 10.1021/acs.orglett.0c02910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study presents an efficient strategy for constructing 1,2-difunctionalized quinoline derivatives via the multicomponent cascade coupling of N-heteroaromatics with alkyl halides and different terminal alkynes. This reaction was achieved through sequential functionalization at the one- and two-positions of quinolines, which displayed a broad substrate scope, environmental friendliness, excellent functional group tolerance, high atom efficiency, and chemoselectivity. The multicomponent coupling involved the abnormal construction of new C-N, C═C, and C═O bonds in one pot. The applicability of this method was further demonstrated by the late-stage functionalization of complex drug molecules under the established conditions.
Collapse
Affiliation(s)
- Qianlin He
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Feng Xie
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Chuanjiang Xia
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Wanyi Liang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Ziyin Guo
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Zhongzhi Zhu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xiuwen Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
12
|
Liang W, Xie F, Yang Z, Zeng Z, Xia C, Li Y, Zhu Z, Chen X. Mono/Dual Amination of Phenols with Amines in Water. Org Lett 2020; 22:8291-8295. [PMID: 32915584 DOI: 10.1021/acs.orglett.0c02924] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We herein describe a practical direct amination of phenols through a palladium-catalyzed hydrogen-transfer-mediated activation method to synthesize the secondary and tertiary amines. In this conversion, environmentally friendly water and inexpensive ammonium formate were used as solvent and reductant, respectively. A range of amines, including aliphatic amines, aniline, secondary amines, and diamines, could be coupled effectively by this method to achieve mono/dual amination and cyclization of phenols. This study not only provides a green and mild strategy for the synthesis of secondary and tertiary naphthylamines but also expands the synthesis of chloroquine in organic chemistry.
Collapse
Affiliation(s)
- Wanyi Liang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Feng Xie
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Zhihai Yang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Zheng Zeng
- Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| | - Chuanjiang Xia
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Yibiao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Zhongzhi Zhu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Xiuwen Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
13
|
Li CJ, Zeng H, Lang Y. Dearomatization–Rearomatization Strategy for Palladium-Catalyzed C–N Cross-Coupling Reactions. Synlett 2020. [DOI: 10.1055/s-0040-1705901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractSubstituted aromatic compounds play important roles in materials, biological agents, dyes, etc. Thus, the synthesis of substituted aromatic compounds has been a hot topic throughout the history of organic chemistry. Traditionally, the Friedel–Crafts reaction was a powerful tool for synthesizing substituted aromatic compounds. In recent decades, metal-catalyzed cross-coupling reactions were well developed via carbon–heteroatom bond cleavage, however, having difficulties towards some strong bonds, such as C(Ar)–OH. To overcome such challenges, newer strategies are needed. In this review, we summarize the recent efforts in the development of dearomatization–rearomatization strategy for cross-coupling reactions via C(Ar)–O bond cleavage.1 Introduction2 Dearomatization–Rearomatization Strategy for Cross-Coupling of Phenols3 Dearomatization–Rearomatization Strategy for Cross-Coupling of Biphenols4 Dearomatization–Rearomatization Strategy for Cross-Coupling of Diphenyl Ethers5 Dearomatization–Rearomatization Strategy for Cross-Coupling of Indoles6 Summary
Collapse
Affiliation(s)
- Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis
| | - Huiying Zeng
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
| | - Yatao Lang
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering
| |
Collapse
|
14
|
Qiu Z, Li CJ. Transformations of Less-Activated Phenols and Phenol Derivatives via C–O Cleavage. Chem Rev 2020; 120:10454-10515. [DOI: 10.1021/acs.chemrev.0c00088] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zihang Qiu
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|