1
|
Dadmehr P, Bikas R, Lis T. Chemical CO 2 fixation using a cyanido bridged heterometallic Zn(II)-Mn(II) 2D coordination polymer. Dalton Trans 2024; 53:15246-15257. [PMID: 39221996 DOI: 10.1039/d4dt01630k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A new cyanido bridged Zn(II)-Mn(II) mixed-metal coordination polymer, {[Zn(μ-L)(μ-CN)2Mn0.5]·(CH3OH)}n (1), has been synthesized by the reaction of Zn(CN)2, Mn(II) salts and a hydrazone ligand (HL = (E)-N'-(phenyl(pyridin-2-yl)methylene)isonicotinohydrazide) in methanol. Compound 1 was characterized using various analytical methods (including elemental analysis, photoluminescence, FT-IR, XRD, SEM, and EDX analyses, and TGA), and its structure was determined by X-ray analysis. These analyses confirmed the formation of a mixed metal Zn(II)-Mn(II) coordination polymer containing both cyanide and hydrazone bridging ligands. This mixed metal coordination polymer exhibits interesting emission spectra by having several emissions via excitation at 230, 270, 375 and 385 nm. The catalytic activity of compound 1 in chemical CO2 fixation was investigated in the presence of epoxides, and the effects of various parameters on its catalytic performance were evaluated. The results of catalytic studies show that compound 1 can efficiently catalyze the chemical CO2 fixation reaction under mild conditions. The amount of co-catalyst, temperature of the reaction, nature of the solvent and also the substituent connected to the epoxide ring are some of the important parameters that have considerable effects on the catalytic activity of 1.
Collapse
Affiliation(s)
- Parvaneh Dadmehr
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, 34148-96818, Qazvin, Iran.
| | - Rahman Bikas
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, 34148-96818, Qazvin, Iran.
| | - Tadeusz Lis
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, Wroclaw 50-383, Poland
| |
Collapse
|
2
|
Steiner MR, Schmallegger M, Donner L, Hlina JA, Marschner C, Baumgartner J, Slugovc C. Using the phospha-Michael reaction for making phosphonium phenolate zwitterions. Beilstein J Org Chem 2024; 20:41-51. [PMID: 38230356 PMCID: PMC10790659 DOI: 10.3762/bjoc.20.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
The reactions of 2,4-di-tert-butyl-6-(diphenylphosphino)phenol and various Michael acceptors (acrylonitrile, acrylamide, methyl vinyl ketone, several acrylates, methyl vinyl sulfone) yield the respective phosphonium phenolate zwitterions at room temperature. Nine different zwitterions were synthesized and fully characterized. Zwitterions with the poor Michael acceptors methyl methacrylate and methyl crotonate formed, but could not be isolated in pure form. The solid-state structures of two phosphonium phenolate molecules were determined by single-crystal X-ray crystallography. The bonding situation in the solid state together with NMR data suggests an important contribution of an ylidic resonance structure in these molecules. The phosphonium phenolates are characterized by UV-vis absorptions peaking around 360 nm and exhibit a negative solvatochromism. An analysis of the kinetics of the zwitterion formation was performed for three Michael acceptors (acrylonitrile, methyl acrylate, and acrylamide) in two different solvents (chloroform and methanol). The results revealed the proton transfer step necessary to stabilize the initially formed carbanion as the rate-determining step. A preorganization of the carbonyl bearing Michael acceptors allowed for reasonable fast direct proton transfer from the phenol in aprotic solvents. In contrast, acrylonitrile, not capable of forming a similar preorganization, is hardly reactive in chloroform solution, while in methanol the corresponding phosphonium phenolate is formed.
Collapse
Affiliation(s)
- Matthias R Steiner
- Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
- Christian Doppler Laboratory for Organocatalysis in Polymerization, Stremayrgasse 9, 8010 Graz, Austria
| | - Max Schmallegger
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Larissa Donner
- Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
- Christian Doppler Laboratory for Organocatalysis in Polymerization, Stremayrgasse 9, 8010 Graz, Austria
| | - Johann A Hlina
- Institute of Chemistry, Inorganic Chemistry, University of Graz, Schubertstraße 1, 8010 Graz, Austria
| | - Christoph Marschner
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Judith Baumgartner
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Christian Slugovc
- Institute for Chemistry and Technology of Materials, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
- Christian Doppler Laboratory for Organocatalysis in Polymerization, Stremayrgasse 9, 8010 Graz, Austria
| |
Collapse
|
3
|
Toda Y, Kobayashi T, Hirai F, Yano T, Oikawa M, Sukegawa K, Shimizu M, Ito F, Suga H. Visible-Light-Driven C-H Imidation of Arenes and Heteroarenes by a Phosphonium Ylide Organophotoredox Catalyst: Application to C-H Functionalization of Alkenes. J Org Chem 2023. [PMID: 37262322 DOI: 10.1021/acs.joc.3c00988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Phosphonium ylide catalysis through an oxidative quenching cycle has been developed for visible-light-driven C-H imidation of arenes and heteroarenes. The present protocol could be applied not only to trihalomethylative lactonization reactions involving trifluoromethyl, trichloromethyl, and tribromomethyl radicals but also to the first example of an organophotoredox-catalyzed imidative lactonization reaction involving a nitrogen-centered electrophilic radical species.
Collapse
Affiliation(s)
- Yasunori Toda
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Toya Kobayashi
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Fumiya Hirai
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Takamichi Yano
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Makoto Oikawa
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Kimiya Sukegawa
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Masahiro Shimizu
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Fuyuki Ito
- Department of Chemistry, Institute of Education, Shinshu University, Nagano 380-8544, Japan
| | - Hiroyuki Suga
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| |
Collapse
|
4
|
Clark R, Ávila J, Costa Gomes M, Padua AAH. Solvation Environments in Porous Ionic Liquids Determine Selectivity in CO 2 Conversion to Cyclic Carbonates. J Phys Chem B 2023; 127:3266-3277. [PMID: 37011369 DOI: 10.1021/acs.jpcb.2c08788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Porous ionic liquids, which are suspensions of nanoporous particles in ionic liquids that maintain permanent porosity, are effective and selective media for the conversion of styrene oxide into styrene carbonate, absorbing CO2 [Zhou et al. Chem. Commun. 2021, 57, 7922-7925]. Here we elucidate the mechanism of selectivity using polarizable molecular dynamics simulations, which provide a detailed view on the structure of the porous ionic liquid and on the local solvation environments of the reacting species. The porous ionic liquids studied are composed of tetradecyltrihexylphosphonium chloride, or [P66614]Cl, and the ZIF-8 zinc-methylimidazolate metal-organic framework (MOF). The CL&Pol polarizable force field was extended to represent epoxide and cyclic carbonate functional groups, allowing the ionic liquid, the reactants, and the MOF to be all represented by fully flexible, polarizable force fields, providing a detailed description of interactions. The presence of reactant and product molecules leads to changes in the structure of the ionic liquid, revealed by domain analysis. The structure of local solvation environments, namely, the arrangement of charged moieties and CO2 around the epoxide ring of the reactant molecules, clearly indicate ring-opening the reaction mechanism. The MOF acts as a reservoir of CO2 through its free volume. The solute molecules are found in the accessible outer cavities of the MOF, which promotes reaction of the epoxide with CO2 excluding other epoxide molecules, thereby preventing the formation of oligomers, which explains the selectivity toward conversion to cyclic carbonates.
Collapse
Affiliation(s)
- Ryan Clark
- Laboratoire de Chimie, École Normale Supérieure de Lyon and CNRS, 69342 Lyon, France
| | - Jocasta Ávila
- Laboratoire de Chimie, École Normale Supérieure de Lyon and CNRS, 69342 Lyon, France
| | - Margarida Costa Gomes
- Laboratoire de Chimie, École Normale Supérieure de Lyon and CNRS, 69342 Lyon, France
| | - Agilio A H Padua
- Laboratoire de Chimie, École Normale Supérieure de Lyon and CNRS, 69342 Lyon, France
| |
Collapse
|
5
|
Ren C, Spannenberg A, Werner T. Synthesis of Bifunctional Phosphonium Salts Bearing Perfluorinated Side Chains and Their Application in the Synthesis of Cyclic Carbonates from Epoxides and CO2. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Changyue Ren
- Leibniz Institute for Catalysis: Leibniz-Institut fur Katalyse eV Organocatalysis GERMANY
| | - Anke Spannenberg
- Leibniz Institute for Catalysis: Leibniz-Institut fur Katalyse eV Analytics GERMANY
| | - Thomas Werner
- Leibniz-Institut für Katalyse e.V. Leibniz-Institut für Katalyse e.V. Albert-Einstein-Str. 29a 18059 Rostock GERMANY
| |
Collapse
|
6
|
Peuronen A, Salojärvi E, Salonen P, Lehtonen A. Integration of catalyst and nucleophile in oxometal aminobis(phenolate) complexes with ammonium iodide pendant arm groups. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Okuno K, Nishiyori R, Abe K, Mori T, Shirakawa S. Efficient methods for the synthesis of chiral 2-oxazolidinones as pharmaceutical building blocks. Chirality 2022; 34:915-924. [PMID: 35488466 DOI: 10.1002/chir.23452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 11/06/2022]
Abstract
Although the wide variety of heterocyclic compounds is common knowledge, chiral 2-oxazolidinones are recognized as some of the most important heterocycles in medicinal chemistry. Many important pharmaceutical molecules have been constructed based on the chiral 2-oxazolidinone backbone. Therefore, the development of even more efficient catalytic methods for the synthesis of chiral 2-oxazolidinones remains a very important pursuit in the field of synthetic organic chemistry. This review summarizes the coupling reactions of epoxides and isocyanates for the preparation of 2-oxazolidinones. Both metal catalysts and organocatalysts promote these reactions. Optically pure 2-oxazolidinones are prepared from optically pure epoxide substrates via these catalytic methods. A synthetic example of a commercially available pharmaceutical compound utilizing this method is also introduced.
Collapse
Affiliation(s)
- Ken Okuno
- Department of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Ryuichi Nishiyori
- Department of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Koki Abe
- Department of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Taiki Mori
- Department of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Seiji Shirakawa
- Department of Environmental Science, Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
8
|
Ikeshita D, Shimura H, Miyakawa S, Masuda Y, Ishida N, Murakami M. Synthesis of Tetraarylphosphonium Salts from Triarylphosphines and Aryl Bromides Exploiting Light and Palladium. CHEM LETT 2022. [DOI: 10.1246/cl.220067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Daichi Ikeshita
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510
| | - Hiroki Shimura
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510
| | - Sho Miyakawa
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510
| | - Yusuke Masuda
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510
| | - Naoki Ishida
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510
| | - Masahiro Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Kyoto University, Katsura, Kyoto 615-8510
| |
Collapse
|
9
|
Ema T. Environmentally Benign Organic Synthesis Based on Solvent-free Catalysis. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.1144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tadashi Ema
- Graduate School of Natural Science and Technology, Okayama University
| |
Collapse
|
10
|
Wan YL, Zhang Z, Ding C, Wen L. Facile construction of bifunctional porous ionic polymers for efficient and metal-free catalytic conversion of CO2 into cyclic carbonates. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Moura IMR, Tranquilino A, Sátiro BG, Silva RO, de Oliveira-Silva D, Oliveira RA, Menezes PH. Unusual Application for Phosphonium Salts and Phosphoranes: Synthesis of Chalcogenides. J Org Chem 2021; 86:5954-5964. [PMID: 33789421 DOI: 10.1021/acs.joc.1c00114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A novel strategy for the synthesis of sulfides and selenides from phosphonium salts and thio- or selenesulfonates, commercially available compounds, is described. When phosphoranes were used in the reaction, different products were obtained. The methodology does not require the use of metals, reactive species, or anhydrous conditions to be performed.
Collapse
Affiliation(s)
- Igor M R Moura
- Depto. de Química Fundamental, Universidade Federal de Pernambuco, 50740-560 Recife, Pernambuco, Brazil
| | - Arisson Tranquilino
- Depto. de Química Fundamental, Universidade Federal de Pernambuco, 50740-560 Recife, Pernambuco, Brazil
| | - Barbara G Sátiro
- Depto. de Química Fundamental, Universidade Federal de Pernambuco, 50740-560 Recife, Pernambuco, Brazil
| | - Ricardo O Silva
- Depto. de Química Fundamental, Universidade Federal de Pernambuco, 50740-560 Recife, Pernambuco, Brazil
| | - Diogo de Oliveira-Silva
- Depto. de Química, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, 09972-270 Diadema, São Paulo, Brazil
| | - Roberta A Oliveira
- Depto. de Química Fundamental, Universidade Federal de Pernambuco, 50740-560 Recife, Pernambuco, Brazil
| | - Paulo H Menezes
- Depto. de Química Fundamental, Universidade Federal de Pernambuco, 50740-560 Recife, Pernambuco, Brazil
| |
Collapse
|
12
|
Shi Y, Pan B, Yu J, Zhou Y, Zhou J. Recent Advances in Applying Carbonyl‐stabilized Phosphorus Ylides for Catalysis. ChemCatChem 2021. [DOI: 10.1002/cctc.202001371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yang Shi
- College of Pharmacy Guizhou University of Traditional Chinese Medicine Guiyang 550025 P. R. China
| | - Bo‐Wen Pan
- College of Pharmacy Guizhou University of Traditional Chinese Medicine Guiyang 550025 P. R. China
| | - Jin‐Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes East China Normal University Shanghai 200062 P. R. China
| | - Ying Zhou
- College of Pharmacy Guizhou University of Traditional Chinese Medicine Guiyang 550025 P. R. China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development Shanghai Key Laboratory of Green Chemistry and Chemical Processes East China Normal University Shanghai 200062 P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry CAS Shanghai 200032 P. R. China
| |
Collapse
|
13
|
Hu Y, Wei Z, Frey A, Kubis C, Ren C, Spannenberg A, Jiao H, Werner T. Catalytic, Kinetic, and Mechanistic Insights into the Fixation of CO 2 with Epoxides Catalyzed by Phenol-Functionalized Phosphonium Salts. CHEMSUSCHEM 2021; 14:363-372. [PMID: 33068328 PMCID: PMC7839512 DOI: 10.1002/cssc.202002267] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/15/2020] [Indexed: 06/11/2023]
Abstract
A series of hydroxy-functionalized phosphonium salts were studied as bifunctional catalysts for the conversion of CO2 with epoxides under mild and solvent-free conditions. The reaction in the presence of a phenol-based phosphonium iodide proceeded via a first order rection kinetic with respect to the substrate. Notably, in contrast to the aliphatic analogue, the phenol-based catalyst showed no product inhibition. The temperature dependence of the reaction rate was investigated, and the activation energy for the model reaction was determined from an Arrhenius-plot (Ea =39.6 kJ mol-1 ). The substrate scope was also evaluated. Under the optimized reaction conditions, 20 terminal epoxides were converted at room temperature to the corresponding cyclic carbonates, which were isolated in yields up to 99 %. The reaction is easily scalable and was performed on a scale up to 50 g substrate. Moreover, this method was applied in the synthesis of the antitussive agent dropropizine starting from epichlorohydrin and phenylpiperazine. Furthermore, DFT calculations were performed to rationalize the mechanism and the high efficiency of the phenol-based phosphonium iodide catalyst. The calculation confirmed the activation of the epoxide via hydrogen bonding for the iodide salt, which facilitates the ring-opening step. Notably, the effective Gibbs energy barrier regarding this step is 97 kJ mol-1 for the bromide and 72 kJ mol-1 for the iodide salt, which explains the difference in activity.
Collapse
Affiliation(s)
- Yuya Hu
- Leibniz Institute for Catalysis e. V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Zhihong Wei
- Leibniz Institute for Catalysis e. V.Albert-Einstein-Straße 29a18059RostockGermany
- Institute of Molecular ScienceKey Laboratory of Materials for Energy Conversion and Storage of Shanxi ProvinceShanxi UniversityTaiyuan030006P. R. China
| | - Anna Frey
- Leibniz Institute for Catalysis e. V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Christoph Kubis
- Leibniz Institute for Catalysis e. V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Chang‐Yue Ren
- Leibniz Institute for Catalysis e. V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Anke Spannenberg
- Leibniz Institute for Catalysis e. V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Haijun Jiao
- Leibniz Institute for Catalysis e. V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Thomas Werner
- Leibniz Institute for Catalysis e. V.Albert-Einstein-Straße 29a18059RostockGermany
| |
Collapse
|
14
|
Guo CH, Liang M, Jiao H. Cycloaddition mechanisms of CO2 and epoxide catalyzed by salophen – an organocatalyst free from metals and halides. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02256j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The coupling mechanism of CO2 and epichlorohydrin catalyzed by salophen is computed. A neutral concerted bifunctional mechanism of phenolate as nucleophile and phenol as H-bonding donor in epoxide ring-opening and CO2 addition is suggested.
Collapse
Affiliation(s)
- Cai-Hong Guo
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education)
- School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
- China
| | - Min Liang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education)
- School of Chemistry and Material Science
- Shanxi Normal University
- Linfen 041004
- China
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock
- Rostock
- Germany
| |
Collapse
|
15
|
Shirakawa S, Okuno K, Nishiyori R, Hiraki M. Environmentally Benign Synthesis of Cyclic Carbonates from Epoxides and Carbon Dioxide Using Binary and Bifunctional Catalysts. HETEROCYCLES 2021. [DOI: 10.3987/rev-20-sr(k)2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Toda Y, Hashimoto K, Mori Y, Suga H. A Phosphonium Ylide as a Ligand for [3 + 2] Coupling Reactions of Epoxides with Heterocumulenes under Mild Conditions. J Org Chem 2020; 85:10980-10987. [PMID: 32806088 DOI: 10.1021/acs.joc.0c01101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The potential of carbonyl-stabilized phosphonium ylides as ligands for novel catalysis was explored. We found that the combination of phosphonium ylides and metal halide salts efficiently catalyzed the reaction of epoxides with carbon dioxide under mild conditions. Five-membered cyclic carbonates, including disubstituted cyclic carbonates, were obtained in good yields with the use of 1 atm of carbon dioxide at 35 °C. Terminal epoxides could be converted to N-aryl oxazolidinones in the reaction with isocyanates under a similar catalytic system.
Collapse
Affiliation(s)
- Yasunori Toda
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | | | - Yoko Mori
- Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Hiroyuki Suga
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| |
Collapse
|
17
|
Nishiyori R, Okuno K, Shirakawa S. Triethylamine Hydroiodide as a Bifunctional Catalyst for the Solvent-Free Synthesis of 2-Oxazolidinones. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000771] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ryuichi Nishiyori
- Department of Environmental Science; Graduate School of Fisheries and Environmental Sciences; Nagasaki University; 1-14 Bunkyo-machi 852-8521 Nagasaki Japan
| | - Ken Okuno
- Department of Environmental Science; Graduate School of Fisheries and Environmental Sciences; Nagasaki University; 1-14 Bunkyo-machi 852-8521 Nagasaki Japan
| | - Seiji Shirakawa
- Department of Environmental Science; Graduate School of Fisheries and Environmental Sciences; Nagasaki University; 1-14 Bunkyo-machi 852-8521 Nagasaki Japan
| |
Collapse
|
18
|
Sperandio C, Rodriguez J, Quintard A. Organocatalytic carbon dioxide fixation to epoxides by perfluorinated 1,3,5-triols catalysts. Org Biomol Chem 2020; 18:2637-2640. [PMID: 32196062 DOI: 10.1039/d0ob00402b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In order to improve epoxides conversion to carbonates by fixation of CO2 a new type of perfluorinated triol catalysts was developed. These simple acyclic scaffolds of enhanced acidity are efficient for catalysis through selective H-bonding activation of the epoxide. In combination with TBAI as co-catalyst, this useful transformation is performed under only 1 atmosphere of CO2 and between 30 to 80 °C. Both the 1,3,5-triol motif and the perfluorinated side chains are crucial in order to observe this epoxide opening under such mild conditions. In addition, the stereochemistry of the starting epoxide can efficiently be conserved during the carbonate formation.
Collapse
Affiliation(s)
- Céline Sperandio
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Jean Rodriguez
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Adrien Quintard
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| |
Collapse
|
19
|
Phosphonium-Based Porous Ionic Polymer with Hydroxyl Groups: A Bifunctional and Robust Catalyst for Cycloaddition of CO 2 into Cyclic Carbonates. Polymers (Basel) 2020; 12:polym12030596. [PMID: 32151078 PMCID: PMC7182888 DOI: 10.3390/polym12030596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 11/17/2022] Open
Abstract
The integration of synergic hydrogen bond donors and nucleophilic anions that facilitates the ring-opening of epoxide is an effective way to develop an active catalyst for the cycloaddition of CO2 with epoxides. In this work, a new heterogeneous catalyst for the cycloaddition of epoxides and CO2 into cyclic carbonates based on dual hydroxyls-functionalized polymeric phosphonium bromide (PQPBr-2OH) was presented. Physicochemical characterizations suggested that PQPBr-2OH possessed large surface area, hierarchical pore structure, functional hydroxyl groups, and high density of active sites. Consequently, it behaved as an efficient, recyclable, and metal-free catalyst for the additive and solvent free cycloaddition of epoxides with CO2. Comparing the activity of PQPBr-2OH with that of the reference catalysts based on mono and non-hydroxyl functionalized polymeric phosphonium bromides suggested that hydroxyl functionalities in PQPBr-2OH showed a critical promotion effect on its catalytic activity for CO2 conversion. Moreover, PQPBr-2OH proved to be quite robust and recyclable. It could be reused at least ten times with only a slight decrease of its initial activity.
Collapse
|
20
|
Grollier K, Vu ND, Onida K, Akhdar A, Norsic S, D'Agosto F, Boisson C, Duguet N. A Thermomorphic Polyethylene‐Supported Imidazolium Salt for the Fixation of CO
2
into Cyclic Carbonates. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Kevin Grollier
- Université de LyonUniversité Claude Bernard Lyon 1, CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN), Bâtiment Lederer 1 rue Victor Grignard F-69622 Villeurbanne cedex France
| | - Nam Duc Vu
- Université de LyonUniversité Claude Bernard Lyon 1, CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN), Bâtiment Lederer 1 rue Victor Grignard F-69622 Villeurbanne cedex France
| | - Killian Onida
- Université de LyonUniversité Claude Bernard Lyon 1, CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN), Bâtiment Lederer 1 rue Victor Grignard F-69622 Villeurbanne cedex France
| | - Ayman Akhdar
- Université de LyonUniversité Claude Bernard Lyon 1, CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN), Bâtiment Lederer 1 rue Victor Grignard F-69622 Villeurbanne cedex France
| | - Sébastien Norsic
- Université de LyonUniv. Lyon 1, CPE Lyon, CNRS UMR 5265, Laboratoire de Chimie Catalyse Polymères et Procédés (C2P2), Equipe LCPP, Bat 308F 43 Bd du 11 Novembre 1918 F-69616 Villeurbanne France
| | - Franck D'Agosto
- Université de LyonUniv. Lyon 1, CPE Lyon, CNRS UMR 5265, Laboratoire de Chimie Catalyse Polymères et Procédés (C2P2), Equipe LCPP, Bat 308F 43 Bd du 11 Novembre 1918 F-69616 Villeurbanne France
| | - Christophe Boisson
- Université de LyonUniv. Lyon 1, CPE Lyon, CNRS UMR 5265, Laboratoire de Chimie Catalyse Polymères et Procédés (C2P2), Equipe LCPP, Bat 308F 43 Bd du 11 Novembre 1918 F-69616 Villeurbanne France
| | - Nicolas Duguet
- Université de LyonUniversité Claude Bernard Lyon 1, CNRS, INSA-Lyon, CPE-Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246, Equipe CAtalyse, SYnthèse et ENvironnement (CASYEN), Bâtiment Lederer 1 rue Victor Grignard F-69622 Villeurbanne cedex France
| |
Collapse
|