1
|
Luo EE, Yang WF, Wang ZJ, Chen LY, Yu MY, Luo XD, Qin XJ. Phytocannabinoid-like meroterpenoids from twigs and leaves of Rhododendron spinuliferum. PHYTOCHEMISTRY 2024; 228:114241. [PMID: 39122160 DOI: 10.1016/j.phytochem.2024.114241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Six pairs of previously undescribed enantiomeric phytocannabinoid-like meroterpenoids, (±)-spinulinoids A‒F, and two naturally occurring compounds, (+)-rhododaurichromanic acid A and (E)-4-((3,7-dimethylocta-2,6-dien-1-yl)oxy)benzoic acid, together with one known congener, (-)-rhododaurichromanic acid A, were obtained from the twigs and leaves of Rhododendron spinuliferum. Their structures were established by their extensive spectral data (NMR and HRESIMS), ECD calculations, and single-crystal X-ray diffraction data. Spinulinoids A and B are unprecedented phytocannabinoid-like meroterpenoids constructed by the resorcinol moiety and a β-bisabolene unit, whereas spinulinoid C represents a rare adduct of quinone and β-bisabolene with a tricyclic 6/6/6 ring system.
Collapse
Affiliation(s)
- E-E Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Wu-Fen Yang
- Yanshan County Maternal and Child Health and Family Planning Service Center, Yanshan Maternal and Child Health Care Hospital, Yanshan, 663100, People's Republic of China
| | - Zhao-Jie Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, People's Republic of China
| | - Ling-Yun Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Mu-Yuan Yu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| | - Xiao-Dong Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming, 650500, People's Republic of China.
| | - Xu-Jie Qin
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
2
|
Zhang H, Guo X, Zhou D, Wen J, Tang Y, Wang J, Liu Y, Chen G, Li N. Design, Synthesis of (±)-Millpuline A, and Biological Evaluation for the Lung Cell Protective Effects through SRC. ChemMedChem 2023; 18:e202300219. [PMID: 37704587 DOI: 10.1002/cmdc.202300219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
In this study, a visible-light-induced intermolecular [2+2] photocycloaddition reaction based on flavonoids was constructed to address the problems of low yield, poor physicochemical properties, and lack of target definition in total synthesis of (±)-millpuline A whose bioactivity remains unknown. As a result, 20 derivatives were synthesized for bioactivity evaluation. Consequently, lung cell protective effects of (±)-millpuline A and compound B13 a were revealed for the first time and the crucial role of stereoconfiguration of the cyclobutane moiety in their protective effects against NNK in normal lung cells was demonstrated. Moreover, through target prediction and experimental verification in MLE-12 cells, SRC was determined to be the target of (±)-millpuline A regarding its protective effect in NNK-induced lung cell injury. Results from RT-Q-PCR and HTRF experiments verified that (±)-millpuline A could repress SRC activity through a transcriptional mechanism but not acting as an inhibitor to directly bind to and thereby inhibit SRC protein. The results in this paper are informative for the further development of visible light-catalyzed cycloaddition of flavonoids and lay a scientific foundation for understanding the bioactivity and underlying mechanism of (±)-millpuline A and other structurally similar natural skeletons.
Collapse
Affiliation(s)
- Heng Zhang
- School of Traditional Chinese Materia Medica Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Xiao Guo
- School of Traditional Chinese Materia Medica Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Di Zhou
- School of Traditional Chinese Materia Medica Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Jiatong Wen
- School of Traditional Chinese Materia Medica Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Yingzhan Tang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Jian Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Yang Liu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Gang Chen
- School of Traditional Chinese Materia Medica Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| | - Ning Li
- School of Traditional Chinese Materia Medica Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, 110016, P.R. China
| |
Collapse
|
3
|
Yagi K, Ohira K, Yamana K, Imato K, Kawasaki R, Ikeda A, Ooyama Y. Development of water-soluble phenazine-2,3-diol-based photosensitizers for singlet oxygen generation. Org Biomol Chem 2023. [PMID: 37161772 DOI: 10.1039/d3ob00491k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Phenazine-2,3-diol-based dyes, KY-1Na and KY-2Na bearing one and two carboxylic acid sodium salts, respectively, have been newly developed as water-soluble photosensitizers (PSs) possessing the ability to generate singlet oxygen (1O2). In order to evaluate the solubility of KY-1Na and KY-2Na in water, the hydrophobicity/hydrophilicity of the two PSs was investigated by experimental measurement of the logarithms (log Po/w) of the 1-octanol/water partition coefficient (Po/w) for the PS. The log Po/w values of both KY-1Na and KY-2Na were determined to be -0.9, indicating that both the PSs are more hydrophilic than Rose Bengal (-0.6) and have hydrophilicity equivalent to methylene blue (-0.9). Both the PSs in water show a broad photoabsorption band in the range of 500 to 600 nm. Thus, we estimated the 1O2 quantum yields (ΦΔ) of KY-1Na and KY-2Na in water by using 9,10-anthracenediyl-bis(methylene)dimalonic acid (ABDA) as a water-soluble 1O2 scavenger. It was found that in water the ΦΔ value (0.19) of KY-2Na is higher than that of KY-1Na (0.06). Density functional theory (DFT) calculations suggested that the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) distributions for the molecular structure of KY-2Na are adequately separated, leading to a decrease in the energy gap (ΔEST) between the singlet state (S1) and the triplet state (T1) that causes efficient intersystem crossing (ISC), compared to that for the molecular structure of KY-1Na. Indeed, time-dependent DFT (TD-DFT) calculations demonstrated that the ΔEST(S1-T1) value (0.82 eV) of KY-2Na is smaller than that (0.98 eV) of KY-1Na, resulting in a relatively high ΦΔ value of KY-2Na. Consequently, we demonstrate that phenazine-2,3-diol-based PSs bearing carboxylic acid salts possess high solubility and moderate 1O2 generation ability in water.
Collapse
Affiliation(s)
- Kazunori Yagi
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| | - Kazuki Ohira
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| | - Keita Yamana
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| | - Keiichi Imato
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| | - Riku Kawasaki
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| | - Atsushi Ikeda
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| | - Yousuke Ooyama
- Applied Chemistry Program, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan.
| |
Collapse
|
4
|
Yang P, Jia Q, Song S, Huang X. [2 + 2]-Cycloaddition-derived cyclobutane natural products: structural diversity, sources, bioactivities, and biomimetic syntheses. Nat Prod Rep 2023. [DOI: 10.1039/d2np00034b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review summarizes the structural diversity, bioactivities, and biomimetic synthesis of [2 + 2]-type cyclobutane natural products, along with discussion of their biosynthesis, stereochemical analysis, racemic occurrence, and biomimetic synthesis.
Collapse
Affiliation(s)
- Peiyuan Yang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Qi Jia
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shaojiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Xiaoxiao Huang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province; Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province; Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang; School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| |
Collapse
|
5
|
Jeon H, Kang G, Kim MJ, Shin JS, Han S, Lee HY. On the Erosion of Enantiopurity of Rhodonoids via Their Asymmetric Total Synthesis. Org Lett 2022; 24:2181-2185. [PMID: 35266724 DOI: 10.1021/acs.orglett.2c00482] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rhodonoid natural products are found in nature as a scalemic mixture. This interesting phytochemical feature is presumed to originate from a reversible electrocyclic ring opening of the chromene core present in the biogenetic precursors of rhodonoids. Herein, we systematically investigated factors that are responsible for this racemization event. This eventually led us to complete the asymmetric total synthesis of rhodonoids A, C, D, and G.
Collapse
Affiliation(s)
- Hyeju Jeon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Gyumin Kang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Myungjo J Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Ji Soo Shin
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sunkyu Han
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hee-Yoon Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
6
|
Qiao L, Zhang K, Wang Z, Li H, Lu P, Wang Y. Visible-Light-Induced Photocatalyst-Free Aerobic Hydroxyazidations of Indoles: A Highly Regioselective and Stereoselective Synthesis of trans-2-Azidoindolin-3-ols. J Org Chem 2021; 86:7955-7962. [PMID: 34061526 DOI: 10.1021/acs.joc.1c00186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A visible-light-promoted aerobic hydroxyazidation of indole derivatives with TMSN3 is described. The reaction proceeded under photocatalyst-free conditions to furnish trans-2-azidoindolin-3-ols with high regioselectivity and stereoselectivity. The protocol is operationally simple, and the starting materials (e.g., 1-(pyrimidin-2-yl) indoles, azidotrimethylsilane, and air) are readily available. The proposed mechanism in which substrates act as photocatalysts upon excitation using blue light-emitting diodes (LEDs) was supported by experimental studies.
Collapse
Affiliation(s)
- Li Qiao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ke Zhang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zhichao Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Hanjie Li
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Ping Lu
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yanguang Wang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
7
|
Burchill L, Day AJ, Yahiaoui O, George JH. Biomimetic Total Synthesis of the Rubiginosin Meroterpenoids. Org Lett 2021; 23:578-582. [PMID: 33372801 DOI: 10.1021/acs.orglett.0c04117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Total synthesis of the Rhododendron meroterpenoids rubiginosins A and G, which both contain unusual 6-6-6-4 ring systems, has been achieved using a bioinspired cascade approach. Stepwise synthesis of these natural products, and the related 6-6-5-4 meroterpenoids fastinoid B and rhodonoid B, from naturally occurring chromene precursors is also reported.
Collapse
Affiliation(s)
- Laura Burchill
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Aaron J Day
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Oussama Yahiaoui
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jonathan H George
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
8
|
Shi Q, Li TT, Wu YM, Sun XY, Lei C, Li JY, Hou AJ. Meroterpenoids with diverse structures and anti-inflammatory activities from Rhododendron anthopogonoides. PHYTOCHEMISTRY 2020; 180:112524. [PMID: 33038550 DOI: 10.1016/j.phytochem.2020.112524] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/03/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Eight pairs of meroterpenoid enantiomers and four achiral meroterpenoids were isolated from Rhododendron anthopogonoides Maxim. Seventeen of them, named (+)-/(-)-anthoponoids A-G, (+)-daurichromene D, and anthoponoids H and I, are undescribed compounds with structural diversity. Their structures were characterized herein by a combined application of spectroscopic techniques, X-ray crystallographic analysis, ECD calculation, and the modified Mosher's method. (+)-/(-)-Anthoponoid A and anthoponoid I are the first Rhododendron meroterpenoids found to possess a hexahydroxanthene motif and a diterpene unit, respectively. Some isolates were identified as NF-κB pathway inhibitors, and (+)-anthoponoid E, (-)-anthoponoid G, and anthoponoid H showed suppressive effects on LPS-induced inflammatory responses in RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Qing Shi
- School of Pharmacy, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 201203, China
| | - Teng-Teng Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong-Mei Wu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xin-Yu Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chun Lei
- School of Pharmacy, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 201203, China
| | - Jing-Ya Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ai-Jun Hou
- School of Pharmacy, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
9
|
Mojarrad AG, Zakavi S. Significantly Increased Stability of Donor-Acceptor Molecular Complexes under Heterogeneous Conditions: Synthesis, Characterization, and Photosensitizing Activity of a Nanostructured Porphyrin-Lewis Acid Adduct. ACS APPLIED MATERIALS & INTERFACES 2020; 12:46190-46204. [PMID: 32967421 DOI: 10.1021/acsami.0c13598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
While the BF3 complexes of meso-tetra(aryl)porphyrins are readily decomposed into their components under aqueous conditions, immobilization of meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (H2TMPyP) on a nanosized polymer (sodium salt of Amberlyst 15, nanoAmbSO3Na) formed a water-stable BF3 complex applicable for efficient aerobic photooxidation of 1,5-dihydroxylnaphthalene and sulfides under green conditions. NanoAmbSO3@H2TMPyP(BF3)2 was characterized by diffuse reflectance UV-vis spectroscopy, dynamic light scattering, thermal gravimetric analysis, Brunauer-Emmett-Teller analysis, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy techniques. The catalyst was successfully used for 10 consecutive reactions with no detectable degradation of the complex and decrease in the catalyst activity. NanoAmbSO3@H2TMPyP(BF3)2 was also completely stable toward dissociation to its components under different light conditions in acetonitrile. The singlet oxygen quantum yields φΔ of H2TMPyP, nanoAmbSO3@H2TMPyP, and their molecular complexes with BF3, determined chemically by using 1,3-diphenylisobenzofuran, revealed substantially higher values in the case of the heterogenized porphyrin and molecular complex.
Collapse
Affiliation(s)
- Aida G Mojarrad
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Saeed Zakavi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
10
|
Wang L, Yang J, Huang JP, Li J, Luo J, Yan Y, Huang SX. Bisaspochalasins A–C: Three Cytochalasan Homodimers with Highly Fused Ring System from an Endophytic Aspergillus flavipes. Org Lett 2020; 22:7930-7935. [PMID: 33001654 DOI: 10.1021/acs.orglett.0c02860] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Li Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jian-Ping Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jie Li
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Jianying Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yijun Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
11
|
Day AJ, George JH. Isolation and Biomimetic Oxidation of Prenylbruceol A, an Anticipated Meroterpenoid Natural Product from Philotheca myoporoides. JOURNAL OF NATURAL PRODUCTS 2020; 83:2305-2309. [PMID: 32662646 DOI: 10.1021/acs.jnatprod.0c00348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Reinvestigation of the coumarin meroterpenoids of Philotheca myoporoides using pressurized hot water extraction (PHWE) procedures led to the isolation of prenylbruceol A, a proposed biosynthetic precursor of seven previously reported bruceol derivatives, prenylbruceols B-H. Protobruceol-I, ostruthin, dipetalactone, and a new dihydrocoumarin natural product were isolated alongside prenylbruceol A. A biomimetic singlet oxygen ene reaction of prenylbruceol A allowed the semisynthesis of prenylbruceols B, C, and D.
Collapse
Affiliation(s)
- Aaron J Day
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jonathan H George
- Department of Chemistry, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
12
|
Costa E Silva R, Oliveira da Silva L, de Andrade Bartolomeu A, Brocksom TJ, de Oliveira KT. Recent applications of porphyrins as photocatalysts in organic synthesis: batch and continuous flow approaches. Beilstein J Org Chem 2020; 16:917-955. [PMID: 32461773 PMCID: PMC7214915 DOI: 10.3762/bjoc.16.83] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/22/2020] [Indexed: 12/26/2022] Open
Abstract
In this review we present relevant and recent applications of porphyrin derivatives as photocatalysts in organic synthesis, involving both single electron transfer (SET) and energy transfer (ET) mechanistic approaches. We demonstrate that these highly conjugated photosensitizers show increasing potential in photocatalysis since they combine both photo- and electrochemical properties which can substitute available metalloorganic photocatalysts. Batch and continuous-flow approaches are presented highlighting the relevance of enabling technologies for the renewal of porphyrin applications in photocatalysis. Finally, the reaction scale in which the methodologies were developed are highlighted since this is an important parameter in the authors' opinion.
Collapse
Affiliation(s)
- Rodrigo Costa E Silva
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | - Luely Oliveira da Silva
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil.,Departamento de Ciências Naturais, Universidade do Estado do Pará, Marabá, PA, 68502-100, Brazil
| | | | - Timothy John Brocksom
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP, 13565-905, Brazil
| | | |
Collapse
|