1
|
Yeung A, Zwijnenburg MA, Orton GRF, Robertson JH, Barendt TA. Investigating the diastereoselective synthesis of a macrocycle under Curtin-Hammett control. Chem Sci 2024; 15:5516-5524. [PMID: 38638241 PMCID: PMC11023033 DOI: 10.1039/d3sc05715a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/04/2024] [Indexed: 04/20/2024] Open
Abstract
This work sheds new light on the stereoselective synthesis of chiral macrocycles containing twisted aromatic units, valuable π-conjugated materials for recognition, sensing, and optoelectronics. For the first time, we use the Curtin-Hammett principle to investigate a chiral macrocyclisation reaction, revealing the potential for supramolecular π-π interactions to direct the outcome of a dynamic kinetic resolution, favouring the opposite macrocyclic product to that expected under reversible, thermodynamically controlled conditions. Specifically, a dynamic, racemic perylene diimide dye (1 : 1 P : M) is strapped with an enantiopure (S)-1,1'-bi-2-naphthol group (P-BINOL) to form two diastereomeric macrocyclic products, the homochiral macrocycle (PP) and the heterochiral species (PM). We find there is notable selectivity for the PM macrocycle (dr = 4 : 1), which is rationalised by kinetic templation from intramolecular aromatic non-covalent interactions between the P-BINOL π-donor and the M-PDI π-acceptor during the macrocyclisation reaction.
Collapse
Affiliation(s)
- Angus Yeung
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | - Martijn A Zwijnenburg
- Department of Chemistry, University College London 20 Gordon Street London WC1H 0AJ UK
| | - Georgia R F Orton
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| | | | - Timothy A Barendt
- School of Chemistry, University of Birmingham Edgbaston Birmingham B15 2TT UK
| |
Collapse
|
2
|
Penty S, Orton GRF, Black DJ, Pal R, Zwijnenburg MA, Barendt TA. A Chirally Locked Bis-perylene Diimide Macrocycle: Consequences for Chiral Self-Assembly and Circularly Polarized Luminescence. J Am Chem Soc 2024; 146:5470-5479. [PMID: 38355475 PMCID: PMC10910538 DOI: 10.1021/jacs.3c13191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Macrocycles containing chiral organic dyes are highly valuable for the development of supramolecular circularly polarized luminescent (CPL) materials, where a preorganized chiral framework is conducive to directing π-π self-assembly and delivering a strong and persistent CPL signal. Here, perylene diimides (PDIs) are an excellent choice for the organic dye component because, alongside their tunable photophysical and self-assembly properties, functionalization of the PDI's core yields a twisted, chiral π-system, capable of CPL. However, configurationally stable PDI-based macrocycles are rare, and those that are also capable of π-π self-assembly beyond dimers are unprecedented, both of which are advantageous for robust self-assembled chiroptical materials. In this work, we report the first bay-connected bis-PDI macrocycle that is configurationally stable (ΔG⧧ > 155 kJ mol-1). We use this chirally locked macrocycle to uncover new knowledge of chiral PDI self-assembly and to perform new quantitative CPL imaging of the resulting single-crystal materials. As such, we discover that the chirality of a 1,7-disubstituted PDI provides a rational route to designing H-, J- and concomitant H- and J-type self-assembled materials, important arrangements for optimizing (chir)optical and charge/energy transport properties. Indeed, we reveal that CPL is amplified in the single crystals of our chiral macrocycle by quantifying the degree of emitted light circular polarization from such materials for the first time using CPL-Laser Scanning Confocal Microscopy.
Collapse
Affiliation(s)
- Samuel
E. Penty
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Georgia R. F. Orton
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Dominic J. Black
- Department
of Chemistry, University of Durham, South Road, Durham DH1 3LE, U.K.
| | - Robert Pal
- Department
of Chemistry, University of Durham, South Road, Durham DH1 3LE, U.K.
| | - Martijn A. Zwijnenburg
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Timothy A. Barendt
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| |
Collapse
|
3
|
Penty S, Zwijnenburg MA, Orton GRF, Stachelek P, Pal R, Xie Y, Griffin SL, Barendt TA. The Pink Box: Exclusive Homochiral Aromatic Stacking in a Bis-perylene Diimide Macrocycle. J Am Chem Soc 2022; 144:12290-12298. [PMID: 35763425 PMCID: PMC9348826 DOI: 10.1021/jacs.2c03531] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work showcases chiral complementarity in aromatic stacking interactions as an effective tool to optimize the chiroptical and electrochemical properties of perylene diimides (PDIs). PDIs are a notable class of robust dye molecules and their rich photo- and electrochemistry and potential chirality make them ideal organic building blocks for chiral optoelectronic materials. By exploiting the new bay connectivity of twisted PDIs, a dynamic bis-PDI macrocycle (the "Pink Box") is realized in which homochiral PDI-PDI π-π stacking interactions are switched on exclusively. Using a range of experimental and computational techniques, we uncover three important implications of the macrocycle's chiral complementarity for PDI optoelectronics. First, the homochiral intramolecular π-π interactions anchor the twisted PDI units, yielding enantiomers with half-lives extended over 400-fold, from minutes to days (in solution) or years (in the solid state). Second, homochiral H-type aggregation affords the macrocycle red-shifted circularly polarized luminescence and one of the highest dissymmetry factors of any small organic molecule in solution (glum = 10-2 at 675 nm). Finally, excellent through-space PDI-PDI π-orbital overlap stabilizes PDI reduced states, akin to covalent functionalization with electron-withdrawing groups.
Collapse
Affiliation(s)
- Samuel
E. Penty
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Martijn A. Zwijnenburg
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Georgia R. F. Orton
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Patrycja Stachelek
- Department
of Chemistry, University of Durham, South Road, Durham DH1 3LE, United
Kingdom
| | - Robert Pal
- Department
of Chemistry, University of Durham, South Road, Durham DH1 3LE, United
Kingdom
| | - Yujie Xie
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Sarah L. Griffin
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Timothy A. Barendt
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
4
|
Kogame-Asahara C, Iguchi H, Honda K, Shigemitsu H, Kida T. Terminal Trialkylsilyl Substituent Effect of Janus-type Molecular Tubes on the Inclusion of Unsaturated Fatty Acid Esters. ACS OMEGA 2021; 6:3227-3231. [PMID: 33553939 PMCID: PMC7860515 DOI: 10.1021/acsomega.0c05672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
A new Janus-type cyclodextrin (CD) molecular tube bearing seven triisopropylsilyl (TIPS) groups at one end is synthesized from a heptakis(6-O-triisopropylsilyl)-β-cyclodextrin (TIPS-β-CD) dimer possessing multiple linkers through the selective removal of seven TIPS groups at the other end. This Janus-type CD tube exhibits a selective inclusion ability for a cis-fatty acid ester over the corresponding trans-fatty acid ester. In addition, the CD tube shows a twofold higher inclusion ability for unsaturated fatty acid esters than the corresponding CD tube bearing seven tert-butyldimethylsilyl (TBDMS) groups, indicating that the molecular size of the terminal substituents remarkably affects the inclusion ability of the CD tube.
Collapse
Affiliation(s)
- Chizuru Kogame-Asahara
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hitomi Iguchi
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kenichiro Honda
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hajime Shigemitsu
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Toshiyuki Kida
- Department
of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- Integrated
Frontier Research for Medical Science Division, Institute for Open
and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Türel T, Valiyaveettil S. Fine-Tuning the Electronic Properties of Azo Chromophore-Incorporated Perylene Bisimide Dyads. J Org Chem 2020; 85:10593-10602. [PMID: 32700536 DOI: 10.1021/acs.joc.0c01166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Perylene bisimide (PBI) and azo-compounds are fascinating molecules with interesting optical properties. Here, we combine the two chromophores to prepare nonconjugated and conjugated stable azo-PBI dyes. The detailed structural characterization, comparison of properties, and solid-state self-assembly of the compounds are discussed. The incorporation of azo groups at the bay side of PBI led to significant changes in optical properties as compared to the model PBIs (M1 and M2). All new azo-PBIs showed photoinduced isomerization, which caused disaggregation and enhancement in fluorescence. The amine-incorporated azo-PBIs (3 and 6) reduced chloroauric acid into gold nanoparticles. The current study offers a simple synthetic strategy and comparison of the properties of conjugated and nonconjugated azo-PBIs, which could be useful in photoelectronic devices.
Collapse
Affiliation(s)
- Tankut Türel
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Suresh Valiyaveettil
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| |
Collapse
|
6
|
Türel T, Valiyaveettil S. A Naphthalene Diimide Based Macrocycle Containing Quaternary Ammonium Groups: An Electron-Deficient Host for Aromatic Carboxylate Derivatives. Chempluschem 2020; 85:1430-1437. [PMID: 32633091 DOI: 10.1002/cplu.202000258] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/10/2020] [Indexed: 02/06/2023]
Abstract
Naphthalene diimide (NDI) compounds are widely used as electron acceptors in various applications. Herein, we combine NDI with quaternary ammonium groups for the synthesis of a highly electron-deficient linear compound 2 and macrocycle 3. The complexation studies of the water-soluble macrocycle 3 with aromatic di- and tetra- carboxylate anions in water were done using absorption, emission, 1 H NMR and NOESY spectroscopic titrations. The NDI incorporated macrocycle 3 showed high binding affinities towards linear aromatic tetracarboxylate anions owing to the size and charge complementarity of the host-guest complex. Macrocycle 3 binds tetracarboxylate anion much better than dicarboxylate anions. Furthermore, the macrocycle 3 is solvated differently in acetonitrile and in water or dimethyl sulfoxide, which induces changes in conformation and photophysical properties. Such electron-deficient optically active macrocycles are useful for developing useful sensor materials.
Collapse
Affiliation(s)
- Tankut Türel
- Department of Chemistry, National University of Singapore, Science Drive 2, Singapore, 117543, Singapore
| | - Suresh Valiyaveettil
- Department of Chemistry, National University of Singapore, Science Drive 2, Singapore, 117543, Singapore
| |
Collapse
|
7
|
Türel T, Mahadevan G, Valiyaveettil S. Modular Synthesis and Structure-Property Correlation of Pyrene - Rylene Dyes for Cellular Imaging. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Tankut Türel
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Gomathi Mahadevan
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| | - Suresh Valiyaveettil
- Department of Chemistry; National University of Singapore; 3 Science Drive 3 Singapore 117543 Singapore
| |
Collapse
|