1
|
Kumar P, Bhalla A. Reaction Pattern and Mechanistic Aspects of Iodine and Iodine-Based Reagents in Selenylation of Aliphatic, Aromatic, and (Hetero)Cyclic Systems. Top Curr Chem (Cham) 2024; 382:12. [PMID: 38589598 DOI: 10.1007/s41061-024-00459-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/15/2024] [Indexed: 04/10/2024]
Abstract
Organoselenium compounds have been the subject of extensive research since the discovery of the biologically active compound ebselen. Ebselen has recently been found to show activity against the main protease of the virus responsible for COVID-19. Other organoselenium compounds are also well-known for their diverse biological activities, with such compounds exhibiting interesting physical properties relevant to the fields of electronics, materials, and polymer chemistry. In addition, the incorporation of selenium into various organic molecules has garnered significant attention due to the potential of selenium to enhance the biological activity of these molecules, particularly in conjunction with bioactive heterocycles. Iodine and iodine-based reagents play a prominent role in the synthesis of organoselenium compounds, being valued for their cost-effectiveness, non-toxicity, and ease of handling. These reagents efficiently selenylate a broad range of organic substrates, encompassing alkenes, alkynes, and cyclic, aromatic, and heterocyclic molecules. They serve as catalysts, additives, inducers, and oxidizing agents, facilitating the introduction of different functional groups at alternate positions in the molecules, thereby allowing for regioselective and stereoselective approaches. Specific iodine reagents and their combinations can be tailored to follow the desired reaction pathways. Here, we present a comprehensive review of the progress in the selenylation of organic molecules using iodine reagents over the past decade, with a focus on reaction patterns, solvent effects, heating, microwave, and ultrasonic conditions. Detailed discussions on mechanistic aspects, such as electrophilic, nucleophilic, radical, electrochemical, and ring expansion reactions via selenylation, multiselenylation, and difunctionalization, are included. The review also highlights the formation of various cyclic, heterocyclic, and heteroarenes resulting from the in situ generation of selenium intermediates, encompassing cyclic ketones, cyclic ethers, cyclic lactones, selenophenes, chromones, pyrazolines, pyrrolidines, piperidines, indolines, oxazolines, isooxazolines, lactones, dihydrofurans, and isoxazolidines. To enhance the reader's interest, the review is structured into different sections covering the selenylation of aliphatic sp2/sp carbon and cyclic sp2 carbon, and then is further subdivided into various heterocyclic molecules.
Collapse
Affiliation(s)
- Pankaj Kumar
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, UT, 160014, India
| | - Aman Bhalla
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, UT, 160014, India.
| |
Collapse
|
2
|
Sonego JM, de Diego SI, Szajnman SH, Gallo-Rodriguez C, Rodriguez JB. Organoselenium Compounds: Chemistry and Applications in Organic Synthesis. Chemistry 2023; 29:e202300030. [PMID: 37378970 DOI: 10.1002/chem.202300030] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/18/2023] [Accepted: 06/28/2023] [Indexed: 06/29/2023]
Abstract
Selenium, originally described as a toxin, turns out to be a crucial trace element for life that appears as selenocysteine and its dimer, selenocystine. From the point of view of drug developments, selenium-containing drugs are isosteres of sulfur and oxygen with the advantage that the presence of the selenium atom confers antioxidant properties and high lipophilicity, which would increase cell membrane permeation leading to better oral bioavailability. In this article, we have focused on the relevant features of the selenium atom, above all, the corresponding synthetic approaches to access a variety of organoselenium molecules along with the proposed reaction mechanisms. The preparation and biological properties of selenosugars, including selenoglycosides, selenonucleosides, selenopeptides, and other selenium-containing compounds will be treated. We have attempted to condense the most important aspects and interesting examples of the chemistry of selenium into a single article.
Collapse
Affiliation(s)
- Juan M Sonego
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Sheila I de Diego
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Sergio H Szajnman
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| | - Carola Gallo-Rodriguez
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), C1428EHA, Buenos Aires, Argentina
| | - Juan B Rodriguez
- Departamento de Química Orgánica Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Unidad de Microanálisis y Métodos Físicos en Química Orgánica (UMYMFOR), C1428EHA, Buenos Aires, Argentina
| |
Collapse
|
3
|
Yadav M, Kumar M, Chahal A, Sodhi N, Chhillar B, Alajangi HK, Barnwal RP, Singh VP. Synthesis, Reactions, and Antioxidant Properties of Bis(3-amino-1-hydroxybenzyl)diselenide. J Org Chem 2023; 88:3509-3522. [PMID: 36847416 DOI: 10.1021/acs.joc.2c02739] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Bis(3-amino-1-hydroxybenzyl)diselenide containing two ortho groups was synthesized from 7-nitro-3H-2,1-benzoxaselenole and in situ generated sodium benzene tellurolate (PhTeNa). One-pot synthesis of 1,3-benzoselenazoles was achieved from bis(3-amino-1-hydroxybenzyl)diselenide and aryl aldehydes using acetic acid as a catalyst. The X-ray crystal structure of chloro-substituted benzoselenazole revealed a planar structure with T-shaped geometry around the Se atom. Both natural bond orbital and atoms in molecules calculations confirmed the presence of secondary Se···H interactions in bis(3-amino-1-hydroxybenzyl)diselenide and Se···O interactions in benzoselenazoles, respectively. The glutathione peroxidase (GPx)-like antioxidant activities of all compounds were evaluated using a thiophenol assay. Bis(3-amino-1-hydroxybenzyl)diselenide and benzoselenazoles showed better GPx-like activity compared to that of the diphenyl diselenide and ebselen, used as references, respectively. Based on 77Se{1H} NMR spectroscopy, a catalytic cycle for bis(3-amino-1-hydroxybenzyl)diselenide using thiophenol and hydrogen peroxide was proposed involving selenol, selenosulfide, and selenenic acid as intermediates. The potency of all GPx mimics was confirmed by their in vitro antibacterial properties against the biofilm formation of Bacillus subtilis and Pseudomonas aeruginosa. Additionally, molecular docking studies were used to evaluate the in silico interactions between the active sites of the TsaA and LasR-based proteins found in Bacillus subtilis and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Manisha Yadav
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| | - Manish Kumar
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| | - Alka Chahal
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| | - Nikhil Sodhi
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| | - Babli Chhillar
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| | - Hema Kumari Alajangi
- Department of Biophysics, Panjab University, Sector-25, Chandigarh 160 014, India
| | - Ravi Pratap Barnwal
- Department of Biophysics, Panjab University, Sector-25, Chandigarh 160 014, India
| | - Vijay P Singh
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| |
Collapse
|
4
|
Gao Q, Guo Y, Sun Z, He X, Gao Y, Fan G, Cao P, Fang L, Bai S, Jia Y. Deaminative Cyclization of Tertiary Amines for the Synthesis of 2-Arylquinoline Derivatives with a Nonsubstituted Vinylene Fragment. Org Lett 2023; 25:109-114. [PMID: 36484535 DOI: 10.1021/acs.orglett.2c03904] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With triethylamine as a vinylene source, a convenient protocol for the regioselective synthesis of β,γ-nonsubstituted 2-arylquinolines from aldehydes and arylamines has been accomplished. The deaminative cyclization is also extended to long-chain tertiary alkylamines, enabling diverse alkyl groups to be concurrently installed into the pyridine rings. This process demonstrates a new conversion pathway for the simultaneous dual C(sp3)-H bond functionalization of tertiary amines, wherein the transient acyclic enamines generated in situ undergo the Povarov reaction.
Collapse
Affiliation(s)
- Qinghe Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yimei Guo
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhenhua Sun
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Xiaodan He
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan 453002, P.R. China
| | - Yiqiao Gao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Guangping Fan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Penghui Cao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Lizhen Fang
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Suping Bai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Yanlong Jia
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| |
Collapse
|
5
|
Saeed S, Zahoor AF, Ahmad M, Anjum MN, Akhtar R, Shahzadi I. Synthetic methodologies for the construction of selenium-containing heterocycles: a review. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2091566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Sadaf Saeed
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Naveed Anjum
- Department of Applied Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Rabia Akhtar
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Irum Shahzadi
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
6
|
Guo T, Li Z, Bi L, Fan L, Zhang P. Recent advances in organic synthesis applying elemental selenium. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Xia Y, Huang H, Hu W, Deng GJ. NH 4I-promoted oxidative formation of benzothiazoles and thiazoles from arylacetic acids and phenylalanines with elemental sulfur. Org Biomol Chem 2021; 19:5108-5113. [PMID: 34009226 DOI: 10.1039/d1ob00671a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A NH4I/K3PO4-based catalytic system has been established to enable oxidative formation of thiazole compounds from arylacetic acids and phenylalanines with elemental sulfur. While the three-component reaction of anilines or β-naphthylamines with arylacetic acids and elemental sulfur affords benzo[2,1-d]thiazoles and naphtho[2,1-d]thiazoles, the annulation of phenylalanines with elemental sulfur produces 2-benzyl and 2-benzoylthiazoles. This work well complements previous three-component annulations of benzothiazoles from other coupling partners.
Collapse
Affiliation(s)
- Yujia Xia
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Wei Hu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
8
|
Zhou XY, Chen X. Oxidative C–H Acyloxylation of Acetone with Carboxylic Acids under Iodine Catalysis. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1336-5720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractIodine-catalyzed oxidative C(sp3)–H acyloxylation of acetone with carboxylic acids has been developed. The method employs iodide as catalyst and sodium chlorite as oxidant. Substituted benzoic acids, naphthoic acids and heteroaromatic carboxylic acids can be used, and 2-oxopropyl carboxylates are obtained with good to excellent yields.
Collapse
|
9
|
Mei R, Xiong F, Yang C, Zhao J. Salicylic Acid‐Promoted Three‐Component Annulation of Benzimidazoles, Aryl Nitroalkenes and Elemental Sulfur. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ruhuai Mei
- Key Laboratory of Coarse Cereal Processing Ministry of Agriculture and Rural Affairs Chengdu University Chengdu 610106 People's Republic of China
| | - Feng Xiong
- Key Laboratory of Coarse Cereal Processing Ministry of Agriculture and Rural Affairs Chengdu University Chengdu 610106 People's Republic of China
| | - Chenrui Yang
- Key Laboratory of Coarse Cereal Processing Ministry of Agriculture and Rural Affairs Chengdu University Chengdu 610106 People's Republic of China
| | - Jinwu Zhao
- School of Pharmacy Guangdong Medical University Dongguan 523808 People's Republic of China
| |
Collapse
|
10
|
Zhou XY, Chen X, Liu HL. KI catalyzed C–H functionalization of acetone for the synthesis of 2-oxopropyl hetero-aromatic carboxylates. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1892762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Xiao-Yu Zhou
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| | - Xia Chen
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| | - Hai-Long Liu
- School of Chemistry and Materials Engineering, Liupanshui Normal University, Liupanshui, China
| |
Collapse
|
11
|
Zhou T, He X, Zuo Y, Wu Y, Hu W, Zhang S, Duan J, Shang Y. Rh‐Catalyzed
Formal [3+2] Cyclization for the Synthesis of
5‐Aryl
‐2‐(quinolin‐2‐yl)oxazoles and Its Applications in Metal Ions Probes. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Tongtong Zhou
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University Wuhu Anhui 241002 China
| | - Xinwei He
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University Wuhu Anhui 241002 China
| | - Youpeng Zuo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University Wuhu Anhui 241002 China
| | - Yuhao Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University Wuhu Anhui 241002 China
| | - Wangcheng Hu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University Wuhu Anhui 241002 China
| | - Shiwen Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University Wuhu Anhui 241002 China
| | - Jiahui Duan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University Wuhu Anhui 241002 China
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule‐Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University Wuhu Anhui 241002 China
| |
Collapse
|
12
|
Hu M, Ren Y. Lewis acid-promoted formation of benzoselenazole derivatives using SeO 2 as a selenium source. Org Biomol Chem 2021; 19:6692-6696. [PMID: 34286789 DOI: 10.1039/d1ob01070k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new one-pot method of using both ortho-inactivated anilines and acetophenones (or methylquinolines) which possess an active H in the α-position of ketones (or benzyl positions) as starting materials to make benzoselenazole derivatives has been developed, which uses SeO2 as a selenium agent. This method first establishes SeO2 as a source of selenium to form benzoselenazole derivatives, which enriches the synthesis method of benzoselenazole. This method has several advantages, including good yields, simple operation, and availability of raw materials. Furthermore, the reaction could be easily scaled and its practical value in organic synthesis is displayed.
Collapse
Affiliation(s)
- Minhui Hu
- Law School, Nanjing University, Hankou Road 22, Nanjing City, Jiangsu 210093, China.
| | - Yaokun Ren
- Pharmacy School, Jiangsu University, Xuefu Road 301, Zhenjiang City, Jiangsu 212013, China.
| |
Collapse
|
13
|
Liu J, Jiang J, Zheng L, Liu Z. Recent Advances in the Synthesis of Nitrogen Heterocycles Using Arenediazonium Salts as Nitrogen Sources. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000700] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jidan Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 People's Republic of China
| | - Jinyuan Jiang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 People's Republic of China
| | - Liyao Zheng
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 People's Republic of China
| | - Zhao‐Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials Guangzhou University Guangzhou 510006 People's Republic of China
| |
Collapse
|