1
|
Li R, Lin X, Ding C, Xu B, Tan Q. Heterocoronenes Containing Pyridine and 1,2-Azaborine Units. Org Lett 2024; 26:11028-11033. [PMID: 39652784 DOI: 10.1021/acs.orglett.4c04211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Several coronenes containing pyridine and azaborine units have been readily prepared and structurally confirmed by X-ray crystallographic analysis. The codoping results in interesting findings and properties such as the first observation of BN-H---NPy hydrogen bonds in crystals of BN-PAHs, short π-π stacking distances, lowered HOMO-LUMO levels, narrow band gap, and unique dual response to fluoride ion and proton in solution.
Collapse
Affiliation(s)
- Ruili Li
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaohong Lin
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Changhua Ding
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Bin Xu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Qitao Tan
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
2
|
Zhang S, Yuan Q, Li G. New multiple-layered 3D polymers showing aggregation-induced emission and polarization. RSC Adv 2024; 14:13342-13350. [PMID: 38660524 PMCID: PMC11040433 DOI: 10.1039/d4ra02128b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
An exceptional achiral and chiral multilayer 3D polymer has been created and controlled by uniform and distinct aromatic chromophore units that are multiply sandwiched by naphthyl berths. In order to put together this assembly, it was necessary to search for new catalytic Suzuki-Miyaura polycouplings among various catalytic systems, monomers, and catalysts. Gel Permeation Chromatography (GPC) was able to verify the presence of many framework layers. The resulting achiral and chiral polymers displayed notable optical characteristic.
Collapse
Affiliation(s)
- Sai Zhang
- School of Pharmacy, Continuous Flow Engineering Laboratory of National Petroleum and Chemical Industry, Changzhou University Changzhou Jiangsu 213164 China
| | - Qingkai Yuan
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock Texas 79409-1061 USA
| | - Guigen Li
- Department of Chemistry and Biochemistry, Texas Tech University Lubbock Texas 79409-1061 USA
| |
Collapse
|
3
|
Ma T, Dong J, Yang DT. Heteroatom-boron-heteroatom-doped π-conjugated systems: structures, synthesis and photofunctional properties. Chem Commun (Camb) 2023; 59:13679-13689. [PMID: 37901914 DOI: 10.1039/d3cc04302a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The potency of heteroatom-doping in reshaping optoelectronic properties arises from the distinct electronegativity variations between heteroatoms and carbon atoms. By incorporating two heteroatoms with differing electronegativities (e.g., B = N), not only is the architectural coherence of π-conjugated systems retained, but also dipolar traits are introduced, accompanied by unique intermolecular interactions absent in their all-carbon analogs. Another burgeoning doping strategy, featuring the heteroatom-boron-heteroatom motif (X-B-X, where X = N, O), has captured growing attention. This configuration's coexistence of the boron-heteroatom unit and an isolated heteroatom stimulates mutual modulation in the dipole of the boron-heteroatom unit and the heteroatom's electronegativity. In this Feature article, we present an encompassing survey of XBX-doped π-conjugated systems, elucidating how the integration of the X-B-X unit induces transformative structural and property changes within π-conjugated systems.
Collapse
Affiliation(s)
- Tinghao Ma
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072 Xi'an, Shaanxi, China.
| | - Jiaqi Dong
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072 Xi'an, Shaanxi, China.
| | - Deng-Tao Yang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072 Xi'an, Shaanxi, China.
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, 430056 Wuhan, China
| |
Collapse
|
4
|
Zhang Y, Zhang X, Yan Q. Synthesis, Structure, and Properties of Monodispersed and Highly Luminescent Organoborane Oligomers. J Org Chem 2023. [PMID: 37467361 DOI: 10.1021/acs.joc.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Organoborane oligomers with well-defined molecular structures and high luminescence are scarce, among which those with boron not used as bridging atoms are even more so. Here, a series of well-defined ethynyl-linked or butadiynyl-linked conjugated organoborane oligomers with high fluorescence quantum yield and extinction coefficient (i.e., high brightness) were prepared by coupling different building blocks featuring dithienooxadiborepine moieties. Single crystal structures of hexyl modified dithienooxadiborepine (1a-hex) and hexyl-modified butadiynyl-linked conjugated dimer (D2-hex) not only verified the identity of the molecular structures but also revealed that the introduction of the hexyl chains distorted the molecular structures due to steric hindrance. Optical measurements showed that the absorption and emission maxima of the six oligomeric molecules bathochromic shifted with increasing numbers of repeating units. Molecules without hexyl chains emit efficient fluorescence upon photoexcitation, and the fluorescence quantum efficiency of the ethynyl-linked conjugated dimer (D1) is close to unity. Theoretical calculation results using density functional theory methods are consistent with the single crystal data, allowing a better understanding of the spectral properties. Such results indicate that the method is efficient for expanding small organoborane molecules into π-conjugated oligomers, which can be used to modulate to emit different colors with high efficiency.
Collapse
Affiliation(s)
- Yumei Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xinnan Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qifan Yan
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
5
|
Sun Z, Yu C, Zhang N, Li L, Jiao Y, Thiruvengadam P, Wu D, Zhang F. Divergent Synthesis of Double Heterohelicenes as Strong Chiral Double Hydrogen-Bonding Donors. Org Lett 2022; 24:6670-6675. [PMID: 36054286 DOI: 10.1021/acs.orglett.2c02734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We developed a very efficient and expandable divergent approach initiated by a direct electrophilic borylation at phenyl rings to synthesize a series of double heterohelicenes. Their π-extended structures with pristine zigzag nitrogen (N)-boron (B)-nitrogen (N) edges offer them substantial physical properties and strong double hydrogen-bond donating capability. The isolated (P,P) and (M,M) enantiomers exhibit circularly polarized luminescence in response to hydrogen-bonding interactions.
Collapse
Affiliation(s)
- Zuobang Sun
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ningjin Zhang
- Instrumental Analytical Center, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Lingling Li
- Instrumental Analytical Center, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yang Jiao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Palani Thiruvengadam
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Dongqing Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
6
|
Novel NBN-Embedded Polymers and Their Application as Fluorescent Probes in Fe 3+ and Cr 3+ Detection. Polymers (Basel) 2022; 14:polym14102025. [PMID: 35631907 PMCID: PMC9145644 DOI: 10.3390/polym14102025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/04/2022] Open
Abstract
The isosteric replacement of C═C by B–N units in conjugated organic systems has recently attracted tremendous interest due to its desirable optical, electronic and sensory properties. Compared with BN-, NBN- and BNB-doped polycyclic aromatic hydrocarbons, NBN-embedded polymers are poised to expand the diversity and functionality of olefin polymers, but this new class of materials remain underexplored. Herein, a series of polymers with BNB-doped π-system as a pendant group were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization from NBN-containing vinyl monomers, which was prepared via intermolecular dehydration reaction between boronic acid and diamine moieties in one pot. Poly{2-(4-Vinylphenyl)-2,3-dihydro-1H-naphtho[1,8-de][1,3,2]diazaborinine} (P1), poly{N-(4-(1H-naphtho[1,8-de][1,3,2]diazaborinin-2(3H)-yl)phenyl)acrylamide} (P2) and poly{N-(4-(1H-benzo[d][1,3,2]diazaborol-2(3H)-yl)phenyl)acrylamide} (P3) were successfully synthesized. Their structure, photophysical properties and application in metal ion detection were investigated. Three polymers exhibit obvious solvatochromic fluorescence. As fluorescent sensors for the detection of Fe3+ and Cr3+, P1 and P2 show excellent selectivity and sensitivity. The limit of detection (LOD) achieved by Fe3+ is 7.30 nM, and the LOD achieved by Cr3+ is 14.69 nM, which indicates the great potential of these NBN-embedded polymers as metal fluorescence sensors.
Collapse
|
7
|
Hruzd M, le Poul N, Cordier M, Kahlal S, Saillard JY, Achelle S, Gauthier S, Robin-le Guen F. Luminescent cyclometalated alkynylplatinum(II) complexes with 1,3-di(pyrimidin-2-yl)benzene ligands: synthesis, electrochemistry, photophysics and computational studies. Dalton Trans 2022; 51:5546-5560. [PMID: 35302571 DOI: 10.1039/d1dt04237h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this article, we report on a series of cyclometalated chloro- and alkynyl-platinum(II) complexes bearing various tridentate N^C^N-cyclometalated ligands derived from 1,3-bis(pyrimidin-2-yl)benzene. The X-ray crystal structures of two alkynyl-platinum(II) complexes were determined and other structures were DFT-calculated. Electrochemical and DFT-computational studies suggest a ligand-centred reduction on the R1-substituted N^C^N ligand, whereas oxidation likely occurs either on the Pt-phenylacetylide moiety and/or the cyclometalated ligand. In CH2Cl2 solution at room temperature, the complexes show phosphorescent emissions ranging from green to orange, depending on the R1 and R2 substituents on the ligands. In KBr solid state matrix, excluding complexes bearing a trifluoromethyl substituted ligand, all compounds exhibit red emission. The presence of an alkynyl ancillary ligand has limited influence on absorption and emission spectra except in the case of the complex with the strongly electron-donating diphenylamino R2 substituent on the alkynyl ligand, for which a significant red-shift was observed. The alkynyl Pt(II) complex with OMe groups as both R1 and R2 substituents shows the best emission quantum yield (0.81 in CH2Cl2 solution) in this series. The full series of DFT calculated band gaps correlated generally well with the electrochemical and absorption data and reasonably model the impact of the substituents on the electronics of these complexes.
Collapse
Affiliation(s)
- Mariia Hruzd
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Nicolas le Poul
- Laboratoire de Chimie, Électrochimie Moléculaires et Chimie Analytique, UMR CNRS 6521, Université de Bretagne Occidentale, UFR Sciences et Techniques, 6 avenue Victor Le Gorgeu - CS 93837, F-29238 Brest Cedex 3, France
| | - Marie Cordier
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Samia Kahlal
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Jean-Yves Saillard
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Sylvain Achelle
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Sébastien Gauthier
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Françoise Robin-le Guen
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| |
Collapse
|
8
|
Borissov A, Maurya YK, Moshniaha L, Wong WS, Żyła-Karwowska M, Stępień M. Recent Advances in Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds. Chem Rev 2022; 122:565-788. [PMID: 34850633 PMCID: PMC8759089 DOI: 10.1021/acs.chemrev.1c00449] [Citation(s) in RCA: 257] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 12/21/2022]
Abstract
This review surveys recent progress in the chemistry of polycyclic heteroaromatic molecules with a focus on structural diversity and synthetic methodology. The article covers literature published during the period of 2016-2020, providing an update to our first review of this topic (Chem. Rev. 2017, 117 (4), 3479-3716).
Collapse
Affiliation(s)
| | | | | | | | | | - Marcin Stępień
- Wydział Chemii, Uniwersytet
Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
9
|
Xiao H, Li T, Sun XL, Wan WM, Bao H, Qian Q, Chen Q. Unpredicted Concentration-Dependent Sensory Properties of Pyrene-Containing NBN-Doped Polycyclic Aromatic Hydrocarbons. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27010327. [PMID: 35011557 PMCID: PMC8746585 DOI: 10.3390/molecules27010327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/20/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022]
Abstract
Pyrene molecules containing NBN-doped polycyclic aromatic hydrocarbons (PAHs) have been synthesized by a simple and efficient intermolecular dehydration reaction between 1-pyrenylboronic acid and aromatic diamine. Pyrene-B (o-phenylenediamine) with a five-membered NBN ring and pyrene-B (1,8-diaminonaphthalene) with a six-membered NBN ring show differing luminescence. Pyrene-B (o-phenylenediamine) shows concentration-dependent luminescence and enhanced emission after grinding at solid state. Pyrene-B (1,8-diaminonaphthalene) exhibits a turn-on type luminescence upon fluoride ion addition at lower concentration, as well as concentration-dependent stability. Further potential applications of Pyrene-B (o-phenylenediamine) on artificial light-harvesting film were demonstrated by using commercial NiR dye as acceptor.
Collapse
Affiliation(s)
- Hang Xiao
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; (H.X.); (T.L.); (Q.Q.); (Q.C.)
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its ReLated Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, China;
| | - Tao Li
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; (H.X.); (T.L.); (Q.Q.); (Q.C.)
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its ReLated Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, China;
| | - Xiao-Li Sun
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; (H.X.); (T.L.); (Q.Q.); (Q.C.)
- Correspondence: (X.-L.S.); (W.-M.W.)
| | - Wen-Ming Wan
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its ReLated Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, China;
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
- Correspondence: (X.-L.S.); (W.-M.W.)
| | - Hongli Bao
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its ReLated Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, China;
| | - Qingrong Qian
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; (H.X.); (T.L.); (Q.Q.); (Q.C.)
| | - Qinghua Chen
- Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; (H.X.); (T.L.); (Q.Q.); (Q.C.)
| |
Collapse
|
10
|
Stein L, Wang C, Förster C, Resch-Genger U, Heinze K. Bulky ligands protect molecular ruby from oxygen quenching. Dalton Trans 2022; 51:17664-17670. [DOI: 10.1039/d2dt02950b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Steric protection strongly reduces phosphorescence quenching of excited molecular rubies by oxygen. The most bulky ligand enables photoluminescence quantum yields up to 5.1% and lifetimes up to 518 µs in air-saturated acetonitrile.
Collapse
Affiliation(s)
- Laura Stein
- Department of Chemistry, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Cui Wang
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Christoph Förster
- Department of Chemistry, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Ute Resch-Genger
- Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Katja Heinze
- Department of Chemistry, Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
11
|
Zhao M, Miao Q. Design, Synthesis and Hydrogen Bonding of B 3 N 6 -[4]Triangulene. Angew Chem Int Ed Engl 2021; 60:21289-21294. [PMID: 34343393 DOI: 10.1002/anie.202109326] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/02/2021] [Indexed: 12/22/2022]
Abstract
Replacement of the allylic C=C-C unit with a N-B-N unit at each of the three zigzag edges of [4]triangulene gives rise to B3 N6 -[4]triangulene, which is envisioned to represent a key structural unit of a new hypothetical boron carbon nitride (BC4 N). A tert-butylated B3 N6 -[4]triangulene has been successfully synthesized by three-fold nitrogen-directed borylation, and the X-ray crystallographic analysis indicates that its slightly bent triangular polycyclic framework can be viewed as a 1,3,5-triphenylbenzene connected by three 4π-electron N-B-N units. The HN-B-NH moiety provides a dual hydrogen-bond donor, which forms H-bonds with halide or carboxylate anions in solution, and form DD-AA hydrogen-bond arrays with 2,7-di(tert-butyl)-pyrene-4,5,9,10-tetraone in the co-crystal. Moreover, the blue fluorescence of B3 N6 -[4]triangulene in solution is responsive to binding p-nitrobenzoate anion through hydrogen bonds.
Collapse
Affiliation(s)
- Mengna Zhao
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Qian Miao
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
12
|
Zhao M, Miao Q. Design, Synthesis and Hydrogen Bonding of B
3
N
6
‐[4]Triangulene. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mengna Zhao
- Department of Chemistry The Chinese University of Hong Kong Shatin, New Territories Hong Kong China
| | - Qian Miao
- Department of Chemistry The Chinese University of Hong Kong Shatin, New Territories Hong Kong China
| |
Collapse
|
13
|
Saha B, Bhattacharyya PK. Role of heteroatoms and substituents on the structure, reactivity, aromaticity, and absorption spectra of pyrene: a density functional theory study. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2020-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Effect of heteroatoms viz. BN and substituents viz. –Me (methyl), –OH (hydroxyl), –NH2 (amine), –COOH (carboxyl), and –CN (cyano) on the structural parameters, global reactivity, aromaticity, and UV-visible spectra of pyrene are studied with the help of density functional theory (DFT). Global reactivity parameters such as global hardness (η) and electrophilicity (ω) are calculated using density functional reactivity theory (DFRT). Time dependent density functional theory (TD-DFT) is explored for interpreting the UV-visible absorption spectra. Aromaticity of the pyrene rings are predicted from the nucleus independent chemical shift (NICS) values. Presence of BN unit and substituent induces reasonable impact on the studied parameters. The observed absorption spectra lie predominantly within the UV-region (both blue and red shifts are observed in presence of BN and substituent). HOMO energy and absorption spectra are affected nominally in solvent phase.
Collapse
Affiliation(s)
- Bapan Saha
- Department of Chemistry , Handique Girls’ College , Guwahati , 781001 , Assam , India
| | | |
Collapse
|
14
|
Crumbach M, Ayhan O, Fritze L, Sprenger JAP, Zapf L, Finze M, Helten H. BNB-doped phenalenyls - aromaticity switch upon one-electron reduction. Chem Commun (Camb) 2021; 57:2408-2411. [PMID: 33544098 DOI: 10.1039/d0cc07671f] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Fully aromatic, luminescent, and highly robust BNB-doped phenalenyls have been prepared, which are isoelectronic to the phenalenyl cation. B-Fluoromesityl-substitution leads to fluorescence in an extremely narrow range and significant increase in the reduction potential. Detailed theoretical investigations revealed an intramolecular aromaticity switch upon one-electron reduction.
Collapse
Affiliation(s)
- Merian Crumbach
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|