1
|
Reinhardt E, Lenz T, Bauer L, Stierstorfer J, Klapötke TM. Synthesis and Characterization of Azido- and Nitratoalkyl Nitropyrazoles as Potential Melt-Cast Explosives. Molecules 2023; 28:6489. [PMID: 37764265 PMCID: PMC10535347 DOI: 10.3390/molecules28186489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Desirable advancements in the field of explosive materials include the development of novel melt-castable compounds with melting points ranging from 80 to 110 °C. This is particularly important due to the limited performance and high toxicity associated with TNT (trinitrotoluene). In this study, a series of innovative melt-castable explosives featuring nitratoalkyl and azidoalkyl functionalities attached to the 3-nitro-, 4-nitro-, 3,4-dinitropyrazole, or 3-azido-4-nitropyrazole scaffold are introduced. These compounds were synthesized using straightforward methods and thoroughly characterized using various analytical techniques, including single-crystal X-ray diffraction, IR spectroscopy, multinuclear nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, elemental analysis, and DTA. Furthermore, the energetic properties such as (theoretical) performance data, sensitivities, and compatibilities of the compounds were evaluated and compared among the different structures.
Collapse
Affiliation(s)
| | | | | | - Jörg Stierstorfer
- Department of Chemistry, Ludwig-Maximilians-University of Munich, Butenandtstr. 5–13, 81377 Munich, Germany; (E.R.); (T.L.); (L.B.)
| | - Thomas M. Klapötke
- Department of Chemistry, Ludwig-Maximilians-University of Munich, Butenandtstr. 5–13, 81377 Munich, Germany; (E.R.); (T.L.); (L.B.)
| |
Collapse
|
2
|
Lease N, Spielvogel KD, Davis JV, Tisdale JT, Klamborowski LM, Cawkwell MJ, Manner VW. Halogenated PETN derivatives: interplay between physical and chemical factors in explosive sensitivity. Chem Sci 2023; 14:7044-7056. [PMID: 37389270 PMCID: PMC10306076 DOI: 10.1039/d3sc01627g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/03/2023] [Indexed: 07/01/2023] Open
Abstract
Determining the factors that influence and can help predict energetic material sensitivity has long been a challenge in the explosives community. Decades of literature reports identify a multitude of factors both chemical and physical that influence explosive sensitivity; however no unifying theory has been observed. Recent work by our team has demonstrated that the kinetics of "trigger linkages" (i.e., the weakest bonds in the energetic material) showed strong correlations with experimental drop hammer impact sensitivity. These correlations suggest that the simple kinetics of the first bonds to break are good indicators for the reactivity observed in simple handling sensitivity tests. Herein we report the synthesis of derivatives of the explosive pentaerythritol tetranitrate (PETN) in which one, two or three of the nitrate ester functional groups are substituted with an inert group. Experimental and computational studies show that explosive sensitivity correlates well with Q (heat of explosion), due to the change in the number of trigger linkages removed from the starting material. In addition, this correlation appears more significant than other observed chemical or physical effects imparted on the material by different inert functional groups, such as heat of formation, heat of explosion, heat capacity, oxygen balance, and the crystal structure of the material.
Collapse
Affiliation(s)
- Nicholas Lease
- High Explosives Science and Technology, Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Kyle D Spielvogel
- High Explosives Science and Technology, Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Jack V Davis
- High Explosives Science and Technology, Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Jeremy T Tisdale
- High Explosives Science and Technology, Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Lisa M Klamborowski
- High Explosives Science and Technology, Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - M J Cawkwell
- Theoretical Division, Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Virginia W Manner
- High Explosives Science and Technology, Los Alamos National Laboratory Los Alamos NM 87545 USA
| |
Collapse
|
3
|
Marrs FW, Davis JV, Burch AC, Brown GW, Lease N, Huestis PL, Cawkwell MJ, Manner VW. Chemical Descriptors for a Large-Scale Study on Drop-Weight Impact Sensitivity of High Explosives. J Chem Inf Model 2023; 63:753-769. [PMID: 36695777 PMCID: PMC9930127 DOI: 10.1021/acs.jcim.2c01154] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/26/2023]
Abstract
The drop-weight impact test is an experiment that has been used for nearly 80 years to evaluate handling sensitivity of high explosives. Although the results of this test are known to have large statistical uncertainties, it is one of the most common tests due to its accessibility and modest material requirements. In this paper, we compile a large data set of drop-weight impact sensitivity test results (mainly performed at Los Alamos National Laboratory), along with a compendium of molecular and chemical descriptors for the explosives under test. These data consist of over 500 unique explosives, over 1000 repeat tests, and over 100 descriptors, for a total of about 1500 observations. We use random forest methods to estimate a model of explosive handling sensitivity as a function of chemical and molecular properties of the explosives under test. Our model predicts well across a wide range of explosive types, spanning a broad range of explosive performance and sensitivity. We find that properties related to explosive performance, such as heat of explosion, oxygen balance, and functional group, are highly predictive of explosive handling sensitivity. Yet, models that omit many of these properties still perform well. Our results suggest that there is not one or even several factors that explain explosive handling sensitivity, but that there are many complex, interrelated effects at play.
Collapse
Affiliation(s)
- Frank W. Marrs
- Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Jack V. Davis
- Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Alexandra C. Burch
- Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Geoffrey W. Brown
- Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Nicholas Lease
- Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | | | - Marc J. Cawkwell
- Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Virginia W. Manner
- Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| |
Collapse
|
4
|
Huestis PL, Lease N, Freye CE, Huber DL, Brown GW, McDonald DL, Nelson T, Snyder CJ, Manner VW. Radiolytic degradation of dodecane substituted with common energetic functional groups †. RSC Adv 2023; 13:9304-9315. [PMID: 36959879 PMCID: PMC10028498 DOI: 10.1039/d3ra00998j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
Explosives exist in and are expected to withstand a variety of harsh environments up to and including ionizing radiation, though little is known about the chemical consequences of exposing explosives to an ionizing radiation field. This study focused on the radiation-induced chemical changes to a variety of common energetic functional groups by utilizing a consistent molecular backbone. Dodecane was substituted with azide, nitro, nitrate ester, and nitramine functional groups and γ-irradiated with 60Co in order to study how the functional group degraded along with what the relative stability to ionizing radiation was. Chemical changes were assessed using a combination of analysis techniques including: nuclear magnetic resonance (NMR) spectroscopy, gas chromatography of both the condensed and gas phases, Raman spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. Results revealed that much of the damage to the molecules was on the energetic functional group and often concentrated on the trigger linkage, also known as the weakest bond in the molecule. The general trend from most to least susceptible to radiolytic damage was found to be D–ONO2 → D–N3 → D–NHNO2 → D–NO2. These results also appear to be in line with the relative stability of these functional groups to things such as photolysis, thermolysis, and explosive insults. The relative radiolytic stability of dodecane functionalized with common energetic functional groups was explored with gamma irradiation and probed by various analytical techniques.![]()
Collapse
|
5
|
Lease N, Klamborowski LM, Perriot R, Cawkwell MJ, Manner VW. Identifying the Molecular Properties that Drive Explosive Sensitivity in a Series of Nitrate Esters. J Phys Chem Lett 2022; 13:9422-9428. [PMID: 36191261 PMCID: PMC9575148 DOI: 10.1021/acs.jpclett.2c02701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Energetic materials undergo hundreds of chemical reactions during exothermic runaway, generally beginning with the breaking of the weakest chemical bond, the "trigger linkage." Herein we report the syntheses of a series of pentaerythritol tetranitrate (PETN) derivatives in which the energetic nitrate ester groups are systematically substituted by hydroxyl groups. Because all the PETN derivatives have the same nitrate ester-based trigger linkages, quantum molecular dynamics (QMD) simulations show very similar Arrhenius kinetics for the first reactions. However, handling sensitivity testing conducted using drop weight impact indicates that sensitivity decreases precipitously as nitrate esters are replaced by hydroxyl groups. These experimental results are supported by QMD simulations that show systematic decreases in the final temperatures of the products and the energy release as the nitrate ester functional groups are removed. To better interpret these results, we derive a simple model based only on the specific enthalpy of explosion and the kinetics of trigger linkage rupture that accounts qualitatively for the decrease in sensitivity as nitrate ester groups are removed.
Collapse
Affiliation(s)
- Nicholas Lease
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Lisa M. Klamborowski
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Romain Perriot
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Marc J. Cawkwell
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Virginia W. Manner
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| |
Collapse
|
6
|
Nelson T, Huestis PL, Manner VW. Modeling Photolytic Decomposition of Energetically Functionalized Dodecanes. J Phys Chem A 2022; 126:7094-7101. [PMID: 36196028 PMCID: PMC9574918 DOI: 10.1021/acs.jpca.2c03404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/20/2022] [Indexed: 11/28/2022]
Abstract
The photolytic stability of explosives and energetic functional groups is of importance for those who regularly handle or are exposed to explosives in typical environmental conditions. This study models the photolytic degradation of dodecane substituted with various energetic functional groups: azide, nitro, nitrate ester, and nitramine. For the studied molecules, it was found that excitons localize on the energetic functional group, no matter where they were initially formed, and thus, the predominant degradation pathway involves the degradation of the energetic functional group. The relative trends for both 4 and 8 eV excitation energies followed with what is expected from the relative stability of the energetic functional groups to thermal and sub-shock degradation. The one notable exception was the azide functional group; more work should be done to further understand the photolytic effects on the azide functional group.
Collapse
Affiliation(s)
- Tammie Nelson
- Physics
and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Patricia L. Huestis
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los
Alamos, New Mexico 87545, United States
| | - Virginia W. Manner
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los
Alamos, New Mexico 87545, United States
| |
Collapse
|
7
|
Cawkwell MJ, Davis J, Lease N, Marrs FW, Burch A, Ferreira S, Manner VW. Understanding Explosive Sensitivity with Effective Trigger Linkage Kinetics. ACS PHYSICAL CHEMISTRY AU 2022; 2:448-458. [PMID: 36855691 PMCID: PMC9955191 DOI: 10.1021/acsphyschemau.2c00022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a simple linear model for ranking the drop weight impact sensitivity of organic explosives that is based explicitly on chemical kinetics. The model is parameterized to specific heats of explosion, Q, and Arrhenius kinetics for the onset of chemical reactions that are obtained from gas-phase Born-Oppenheimer molecular dynamics simulations for a chemically diverse set of 24 molecules. Reactive molecular dynamics simulations sample all possible decomposition pathways of the molecules with the appropriate probabilities to provide an effective reaction barrier. In addition, the calculations of effective trigger linkage kinetics can be accomplished without prior physical intuition of the most likely decomposition pathways. We found that the specific heat of explosion tends to reduce the effective barrier for decomposition in accordance with the Bell-Evans-Polanyi principle, which accounts naturally for the well-known correlations between explosive performance and sensitivity. Our model indicates that sensitive explosives derive their properties from a combination of weak trigger linkages that react at relatively low temperatures and large specific heats of explosion that further reduce the effective activation energy.
Collapse
Affiliation(s)
- Marc J. Cawkwell
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jack Davis
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Nicholas Lease
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Frank W. Marrs
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Alexandra Burch
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Suyana Ferreira
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Virginia W. Manner
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
8
|
Batyrev IG, Byrd EFC, Sausa RC. Single-Crystal Diffraction, Raman Spectroscopy, and Density Functional Theory of DTO [ N-(1,7-Dinitro-1,2,6,7-tetrahydro-[1,3,5]triazino[1,2- c][1,3,5]oxadiazin-8(4H)-ylidene)nitramide]. J Phys Chem A 2022; 126:6648-6656. [PMID: 36126112 DOI: 10.1021/acs.jpca.2c04937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A combined experimental and modeling study of energetic compound N-(1,7-dinitro-1,2,6,7-tetrahydro-[1,3,5]triazino[1,2-c][1,3,5]oxadiazin-8(4H)-ylidene)nitramide [C5H6N8O7, (DTO)] has been performed. We report its crystal structure, solid-phase heat of formation, and its vibrational and electronic structure obtained by single-crystal X-ray diffractometry, Raman spectroscopy, and density functional theory (DFT). DTO exhibits two adjoining six-membered rings, a triazine ring (C3N3) and an oxadiazine ring (C3N2O) ring containing two nitro functional groups and one nitroamino group. DTO crystallizes with four molecules in its unit cell and presents a density of 1.862 kg/m3 at 298 K, in excellent agreement with both DFT calculations performed both at the molecular level using the B3LYP with the 6-311+G** basis set and the solid-state level using the hybrid functional HSE6 optimized with norm-conserving pseudopotentials. The calculated vibrational structure allows for the symmetry assignment of key Raman modes in terms of atomic movements, and the calculated frequency values are in good agreement with experiment. The solid-phase DFT calculations reveal that the N atoms of the triazine ring contribute mostly to the density of states at the Fermi level. In addition, we present and discuss the computed solid-phase heat of formation (215.9 kJ/mol) and molecular electrostatic potential surface of DTO and compare them to complementary materials.
Collapse
Affiliation(s)
- Iskander G Batyrev
- Army Combat Capabilities Development Command (DEVCOM), Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - Edward F C Byrd
- Army Combat Capabilities Development Command (DEVCOM), Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| | - Rosario C Sausa
- Army Combat Capabilities Development Command (DEVCOM), Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, United States
| |
Collapse
|
9
|
Manner VW, Smilowitz L, Freye CE, Cleveland AH, Brown GW, Suvorova N, Tian H. Chemical Evaluation and Performance Characterization of Pentaerythritol Tetranitrate (PETN) under Melt Conditions. ACS MATERIALS AU 2022; 2:464-473. [PMID: 36855707 PMCID: PMC9928408 DOI: 10.1021/acsmaterialsau.2c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pentaerythritol tetranitrate (PETN) is a nitrate ester explosive commonly used in commercial detonators. Although its degradation properties have been studied extensively, very little information has been collected on its thermal stability in the molten state due to the fact that its melting point is only ∼20 °C below its onset of decomposition. Furthermore, studies that have been performed on PETN thermal degradation often do not fully characterize or quantify the decomposition products. In this study, we heat PETN to melt temperatures and identify thermal decomposition products, morphology changes, and mass loss by ultrahigh-pressure liquid chromatography coupled to quadrupole time of flight mass spectrometry, scanning electron microscopy, nuclear magnetic resonance spectroscopy, and differential scanning calorimetry. For the first time, we quantify several decomposition products using independently prepared standards and establish the resulting melting point depression after the first melt. We also estimate the amount of decomposition relative to sublimation that we measure through gas evolution and evaluate the performance behavior of the molten material in commercial detonator configurations.
Collapse
Affiliation(s)
- Virginia W. Manner
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los Alamos, New Mexico 87544, United States,
| | - Laura Smilowitz
- Physical
Chemistry and Spectroscopy, Los Alamos National
Laboratory, Los Alamos, New Mexico 87544, United States
| | - Chris E. Freye
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Alexander H. Cleveland
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Geoffrey W. Brown
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Natalya Suvorova
- Physical
Chemistry and Spectroscopy, Los Alamos National
Laboratory, Los Alamos, New Mexico 87544, United States
| | - Hongzhao Tian
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| |
Collapse
|
10
|
Gruhne MS, Lenz T, Rösch M, Lommel M, Wurzenberger MHH, Klapötke TM, Stierstorfer J. Nitratoethyl-5H-tetrazoles: improving the oxygen balance through application of organic nitrates in energetic coordination compounds. Dalton Trans 2021; 50:10811-10825. [PMID: 34291271 DOI: 10.1039/d1dt01898a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1- and 2-Nitratoethyl-5H-tetrazole (1-NET and 2-NET) were prepared through nitration of the respective alkyl alcohol using 100% nitric acid. A mixture of 1- and 2-hydroxyethyl-5H-tetrazole was obtained after alkylation of 1,5H-tetrazole. Also, a one-pot synthesis of 1-hydroxyethyl-5H-tetrazole was developed enabling the selective preparation of 1-NET. Both organic nitrates were characterized by 1H, 13C, and 1H-15N HMBC NMR spectroscopy. In addition, calculations using the Hirshfeld method and the EXPLO5 code were performed. Principally, 20 energetic coordination compounds involving the d-metals Mn, Cu, Zn, and Ag, each structurally characterized by low temperature single crystal X-ray diffraction, were prepared based on 1-NET and 2-NET. Of these complexes, 18 were obtained as pure bulk materials, and therefore, characterized for impact, friction, and ball drop impact sensitivity, as well as electrostatic discharge and thermal stability using differential thermal analysis. Hot plate and hot needle tests were performed mostly showing strong deflagrations making the complexes candidates for green combustion catalysts. Furthermore, successful PETN initiation experiments were carried out for several complexes and all ECCs were investigated by laser ignition experiments.
Collapse
Affiliation(s)
- Michael S Gruhne
- Department of Chemistry, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, D-81337 Munich, Germany.
| | - Tobias Lenz
- Department of Chemistry, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, D-81337 Munich, Germany.
| | - Markus Rösch
- Department of Chemistry, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, D-81337 Munich, Germany.
| | - Marcus Lommel
- Department of Chemistry, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, D-81337 Munich, Germany.
| | - Maximilian H H Wurzenberger
- Department of Chemistry, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, D-81337 Munich, Germany.
| | - Thomas M Klapötke
- Department of Chemistry, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, D-81337 Munich, Germany.
| | - Jörg Stierstorfer
- Department of Chemistry, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, D-81337 Munich, Germany.
| |
Collapse
|
11
|
Lease N, Holmes MD, Englert-Erickson MA, Kay LM, Francois EG, Manner VW. Analysis of Ignition Sites for the Explosives 3,3'-Diamino-4,4'-azoxyfurazan (DAAF) and 1,3,5,7-Tetranitro-1,3,5,7-tetrazoctane (HMX) Using Crush Gun Impact Testing. ACS MATERIALS AU 2021; 1:116-129. [PMID: 36855395 PMCID: PMC9888612 DOI: 10.1021/acsmaterialsau.1c00013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The handling safety characteristics of energetic materials must be measured in order to ensure the safe transport and use of explosives. Drop-weight impact sensitivity measurements are one of the first standardized tests performed for energetics. They utilize a small amount of the explosive sample and a standard weight, which is dropped on the material from various heights to determine its sensitivity. While multiple laboratories have used the impact sensitivity test as an initial screening tool for explosive sensitivity for the past 60 years, variability exists due to the use of different instruments, different methods to determine the initiation, and the scatter commonly associated with less-sensitive explosives. For example, standard explosives such as 1,3,5,7-tetranitro-1,3,5,7-tetrazoctane (HMX) initiate reliably and consistently on the drop-weight impact test, whereas insensitive explosives such as 3,3'-diamino-4,4'-azoxyfurazan (DAAF) exhibit variability in sound levels and the expended material. Herein we investigate the impact sensitivity of DAAF and HMX along with a more detailed investigation of ignition sites using a novel "crush gun" apparatus: a pneumatically powered drop-weight tower with advanced diagnostics, including high-speed visual and infrared cameras. Using this crush gun assembly, the ignition sites in HMX and DAAF were analyzed with respect to the effects of particle size and the presence of a source of grit. The formation of ignition sites was observed in both explosives; however, only HMX showed ignition sites that propagated to a deflagration at lower firing speeds. Finally, the presence of grit particles was shown to increase the occurrence of ignition sites in DAAF at lower firing speeds, though propagation to a full reaction was not observed on the time scale of the test. These results enable a better understanding of how ignition and propagation occurs during the impact testing of DAAF.
Collapse
Affiliation(s)
- Nicholas Lease
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Matthew D. Holmes
- Explosive
Applications and Special Projects, Los Alamos
National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Michael A. Englert-Erickson
- Explosive
Applications and Special Projects, Los Alamos
National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Lisa M. Kay
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Elizabeth G. Francois
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los Alamos, New Mexico 87545, United States,
| | - Virginia W. Manner
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los Alamos, New Mexico 87545, United States,
| |
Collapse
|
12
|
Sabatini JJ, Johnson EC. A Short Review of Nitric Esters and Their Role in Energetic Materials. ACS OMEGA 2021; 6:11813-11821. [PMID: 34056335 PMCID: PMC8154001 DOI: 10.1021/acsomega.1c01115] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/19/2021] [Indexed: 05/05/2023]
Abstract
A review of energetic materials based on the nitric ester functionality is presented. Examined are materials that are classified as primary explosives, pressable secondary explosives, melt-castable secondary explosives, and rocket- and gun-propellant materials. Disclosed are the molecular structures, physical properties, performances, and sensitivities of the most important legacy nitric esters, as well as the relevant new materials developed within the past several years. Where necessary, discussions of the synthetic protocols to synthesize these materials are also presented.
Collapse
|
13
|
Zhou S, Dong Z, Yang R, Wang X, Ye Z. Structure‐Property Relationships of ETNC and Its Salts Compared with PETNC and Its Salts. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shengren Zhou
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P.R.China
| | - Zhen Dong
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P.R.China
| | - Rui Yang
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P.R.China
| | - Xieyang Wang
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P.R.China
| | - Zhiwen Ye
- School of Chemical Engineering Nanjing University of Science and Technology Nanjing 210094 P.R.China
| |
Collapse
|
14
|
Marrs FW, Manner VW, Burch AC, Yeager JD, Brown GW, Kay LM, Buckley RT, Anderson-Cook CM, Cawkwell MJ. Sources of Variation in Drop-Weight Impact Sensitivity Testing of the Explosive Pentaerythritol Tetranitrate. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c06294] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Frank W. Marrs
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Virginia W. Manner
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Alexandra C. Burch
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - John D. Yeager
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Geoffrey W. Brown
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Lisa M. Kay
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Reid T. Buckley
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | | | - Marc J. Cawkwell
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
15
|
Luk′yanov OA, Parakhin VV, Shlykova NI, Dmitrienko AO, Melnikova EK, Kon'kova TS, Monogarov KA, Meerov DB. Energetic N-azidomethyl derivatives of polynitro hexaazaisowurtzitanes series: CL-20 analogues having the highest enthalpy. NEW J CHEM 2020. [DOI: 10.1039/d0nj01453b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Novel energetic components for rocket propellants, based on polynitro hexaazaisowurtzitanes, have been prepared with high enthalpies of formation that significantly exceed that of CL-20.
Collapse
Affiliation(s)
- Oleg A. Luk′yanov
- N. D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow
- Russian Federation
| | - Vladimir V. Parakhin
- N. D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow
- Russian Federation
| | - Nina I. Shlykova
- N. D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- Moscow
- Russian Federation
| | - Artem O. Dmitrienko
- A. N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow
- Russian Federation
| | - Elizaveta K. Melnikova
- A. N. Nesmeyanov Institute of Organoelement Compounds
- Russian Academy of Sciences
- Moscow
- Russian Federation
- M. V. Lomonosov Moscow State University
| | - Tatyana S. Kon'kova
- N. N. Semenov Institute of Chemical Physics
- Russian Academy of Sciences
- Moscow
- Russian Federation
| | - Konstantin A. Monogarov
- N. N. Semenov Institute of Chemical Physics
- Russian Academy of Sciences
- Moscow
- Russian Federation
| | - Dmitry B. Meerov
- N. N. Semenov Institute of Chemical Physics
- Russian Academy of Sciences
- Moscow
- Russian Federation
| |
Collapse
|