1
|
Kataoka S, Kitagawa D, Sotome H, Ito S, Miyasaka H, Bardeen CJ, Kobatake S. Relationship between spatially heterogeneous reaction dynamics and photochemical kinetics in single crystals of anthracene derivatives. Chem Sci 2024; 15:13421-13428. [PMID: 39183903 PMCID: PMC11339781 DOI: 10.1039/d4sc03060e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/07/2024] [Indexed: 08/27/2024] Open
Abstract
Understanding physicochemical property changes based on reaction kinetics is required to design materials exhibiting desired functions at arbitrary timings. In this work, we investigated the photodimerization of anthracene derivatives in single crystals. Single crystals of 9-cyanoanthracene (9CA) and 9-anthraldehyde (9AA) exhibited reaction front propagation on the optical length scale, while 9-methylanthracene and 9-acetylanthracene crystals underwent spatially homogeneous conversion. Moreover, the sigmoidal behavior in the absorbance change associated with the reaction was much pronounced in the case of 9CA and 9AA and correlated with the observation of heterogeneous reaction progress. A kinetic analysis based on the Finke-Watzky model showed that the effective quantum yield of the photochemical reaction changes by more than an order of magnitude during the course of the reaction in 9CA and 9AA. Both the reaction front propagation and nonlinear kinetic behavior could be rationalized in terms of the difference in the cooperativity of the reactions. We propose a plausible mechanism for the heterogeneous reaction progress in single crystals that depends on the magnitude of the conformational change required for reaction. Our results provide useful information to understand the connection between photochemical reaction progress in the crystalline phase and the dynamic changes in the physicochemical properties.
Collapse
Affiliation(s)
- Sogo Kataoka
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - Daichi Kitagawa
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - Hikaru Sotome
- Division of Frontier Materials Science and Center for Promotion of Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama-cho, Toyonaka Osaka 560-8531 Japan
| | - Syoji Ito
- Division of Frontier Materials Science and Center for Promotion of Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama-cho, Toyonaka Osaka 560-8531 Japan
| | - Hiroshi Miyasaka
- Division of Frontier Materials Science and Center for Promotion of Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama-cho, Toyonaka Osaka 560-8531 Japan
| | - Christopher J Bardeen
- Department of Chemistry, University of California, Riverside 501 Big Springs Road Riverside CA 92521 USA
| | - Seiya Kobatake
- Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| |
Collapse
|
2
|
Wang Z, Chen X, Song Y, Du Z, Zhou Y, Li M, Huang W, Xu Q, Li Y, Zhao S, Luo J. A Two-Dimensional Hybrid Perovskite With Heat Switching Birefringence. Angew Chem Int Ed Engl 2023; 62:e202311086. [PMID: 37766424 DOI: 10.1002/anie.202311086] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 09/29/2023]
Abstract
Birefringent crystals that can switch light polarization have important applications in optoelectronics. In the last decades, birefringence is mostly optimized by chemical strategies. Recently, switching birefringence by physical means has attracted much attention. Here, this work reports the observation of heat switching birefringence in a 2D layered hybrid halide perovskite (C2 N3 H4 )2 PbCl4 ((C2 N3 H4 )+ =1,2,4-triazolium). This heat switching birefringence leads to a significant change in the interference color for the crystal plate under the illumination of orthogonal polarized light. Structure analyses reveal a heat dependent structure transition in (C2 N3 H4 )2 PbCl4 , whose birefringence is switched by the change in the distortion degree of PbCl6 octahedron. This discovery may be beneficial to the further development of stimuli-responsive polarization optical devices.
Collapse
Affiliation(s)
- Ziyi Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Xu Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Yipeng Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Zhipeng Du
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Yang Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Minjuan Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Weiqi Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Qianting Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Yanqiang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
| | - Sangen Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou, Fujian, China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, Fujian, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, 350108, Fuzhou, Fujian, China
| |
Collapse
|
3
|
Morimoto K, Kitagawa D, Bardeen CJ, Kobatake S. Cooperative Photochemical Reaction Kinetics in Organic Molecular Crystals. Chemistry 2023; 29:e202203291. [PMID: 36414545 DOI: 10.1002/chem.202203291] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
Photoreactive molecular crystals have been intensively investigated as next-generation functional materials. Changes in physicochemical properties are usually interpreted in terms of static pre- and post-reaction molecular structures and packings determined by X-ray structure analysis. However, to elucidate the dynamic properties, it is necessary to understand the dynamic nature of photochemical kinetics in crystals. Reaction dynamics in the crystal phase can be dramatically different from those in dilute solution because the local molecular environment evolves as the surrounding reactant molecules are transformed into products. In this Review article, we summarize multiple examples of photochemical reactions in the crystalline phase that do not follow classical kinetic behavior. We also discuss different theoretical methods that can be used to describe this behavior. This Review article should help provide a foundation for future workers to understand and analyze photochemical reaction kinetics in crystals.
Collapse
Affiliation(s)
- Kohei Morimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto., Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Daichi Kitagawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto., Sumiyoshi-ku, Osaka, 558-8585, Japan.,Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto., Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Christopher J Bardeen
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA 92521, USA
| | - Seiya Kobatake
- Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto., Sumiyoshi-ku, Osaka, 558-8585, Japan.,Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto., Sumiyoshi-ku, Osaka, 558-8585, Japan
| |
Collapse
|
4
|
Morimoto K, Kitagawa D, Sotome H, Ito S, Miyasaka H, Kobatake S. Edge-to-Center Propagation of Photochemical Reaction during Single-Crystal-to-Single-Crystal Photomechanical Transformation of 2,5-Distyrylpyrazine Crystals. Angew Chem Int Ed Engl 2022; 61:e202212290. [PMID: 36326234 DOI: 10.1002/anie.202212290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 11/06/2022]
Abstract
Photomechanical molecular crystals are promising materials for photon-powered artificial actuators. To interpret the photomechanical responses, the spatiotemporal distribution of photoproducts in crystals could be an important role in addition to molecular structures, molecular packings, illumination conditions, crystal morphology, crystal size, and so on. In this study, we have found that single crystals of 2,5-distyrylpyrazine show a smooth single-crystal-to-single-crystal photomechanical expansion, and the photochemical reaction propagates from the edge to the center of the single crystal. We revealed that the surface effect (special reactivity at the crystal surface) in addition to the cooperative effect (the reaction is facilitated by neighboring molecules) is essential for the edge-to-center propagation of the photochemical reaction. Our results would provide a foundation for future studies of the photochemical reaction dynamics in photomechanical molecular crystals.
Collapse
Affiliation(s)
- Kohei Morimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Daichi Kitagawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan.,Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Hikaru Sotome
- Division of Frontier Materials Science and Center for Promotion of Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
| | - Syoji Ito
- Division of Frontier Materials Science and Center for Promotion of Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
| | - Hiroshi Miyasaka
- Division of Frontier Materials Science and Center for Promotion of Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka, 560-8531, Japan
| | - Seiya Kobatake
- Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan.,Department of Chemistry and Bioengineering, Graduate School of Engineering, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| |
Collapse
|
5
|
Morimoto K, Kitagawa D, Tong F, Chalek K, Mueller LJ, Bardeen CJ, Kobatake S. Correlating Reaction Dynamics and Size Change during the Photomechanical Transformation of 9‐Methylanthracene Single Crystals. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kohei Morimoto
- Department of Applied Chemistry Graduate School of Engineering Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - Daichi Kitagawa
- Department of Applied Chemistry Graduate School of Engineering Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| | - Fei Tong
- Department of Chemistry University of California, Riverside 501 Big Springs Road Riverside CA 92521 USA
- Present address: Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Feringa Nobel Prize Scientist Joint Research Center Frontiers Science Center for Materiobiology and Dynamic Chemistry Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Kevin Chalek
- Department of Chemistry University of California, Riverside 501 Big Springs Road Riverside CA 92521 USA
| | - Leonard J. Mueller
- Department of Chemistry University of California, Riverside 501 Big Springs Road Riverside CA 92521 USA
| | - Christopher J. Bardeen
- Department of Chemistry University of California, Riverside 501 Big Springs Road Riverside CA 92521 USA
| | - Seiya Kobatake
- Department of Applied Chemistry Graduate School of Engineering Osaka City University 3-3-138 Sugimoto, Sumiyoshi-ku Osaka 558-8585 Japan
| |
Collapse
|
6
|
Morimoto K, Kitagawa D, Tong F, Chalek K, Mueller LJ, Bardeen CJ, Kobatake S. Correlating Reaction Dynamics and Size Change during the Photomechanical Transformation of 9-Methylanthracene Single Crystals. Angew Chem Int Ed Engl 2021; 61:e202114089. [PMID: 34761506 DOI: 10.1002/anie.202114089] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 01/16/2023]
Abstract
Photomechanical molecular crystals that expand under illumination could potentially be used as photon-powered actuators. In this study, we find that the use of high-quality single crystals of 9-methylanthracene (9MA) leads to more homogeneous reaction kinetics than that previously seen for polycrystalline samples, presumably due to a lower concentration of defects. Furthermore, simultaneous observation of absorbance and shape changes in single crystals revealed that the dimensional change mirrors the reaction progress, resulting in a smooth expansion of 7 % along the c-axis that is linearly correlated with reaction progress. The same expansion dynamics are highly reproducible across different single crystal samples. Organic single crystals exhibit well-defined linear expansions during 100 % photoconversion, suggesting that this class of solid-state phase change material could be used for actuation.
Collapse
Affiliation(s)
- Kohei Morimoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Daichi Kitagawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Fei Tong
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA.,Present address: Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kevin Chalek
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA
| | - Leonard J Mueller
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA
| | - Christopher J Bardeen
- Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside, CA, 92521, USA
| | - Seiya Kobatake
- Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| |
Collapse
|
7
|
Ramakrishnan S, Stagno JR, Magidson V, Heinz WF, Wang YX. A combined approach to characterize ligand-induced solid-solid phase transitions in biomacromolecular crystals. J Appl Crystallogr 2021; 54:787-796. [PMID: 34194289 PMCID: PMC8202036 DOI: 10.1107/s1600576721003137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/24/2021] [Indexed: 11/10/2022] Open
Abstract
Solid-solid phase transitions (SSPTs) are widespread naturally occurring phenomena. Understanding the molecular mechanisms and kinetics of SSPTs in various crystalline materials, however, has been challenging due to technical limitations. In particular, SSPTs in biomacromolecular crystals, which may involve large-scale changes and particularly complex sets of interactions, are largely unexplored, yet may have important implications for time-resolved crystallography and for developing synthetic biomaterials. The adenine riboswitch (riboA) is an RNA control element that uses ligand-induced conformational changes to regulate gene expression. Crystals of riboA, upon the addition of a ligand, undergo an SSPT from monoclinic to triclinic to orthorhombic. Here, solution atomic force microscopy (AFM) and polarized video microscopy (PVM) are used to characterize the multiple transition states throughout the SSPT in both the forward and the reverse directions. This contribution describes detailed protocols for growing crystals directly on mica or glass surfaces for AFM and PVM characterization, respectively, as well as methods for image processing and phase-transition kinetics analysis.
Collapse
Affiliation(s)
- Saminathan Ramakrishnan
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Jason R. Stagno
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Valentin Magidson
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - William F. Heinz
- Optical Microscopy and Analysis Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Yun-Xing Wang
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|