Martínez JP, Trzaskowski B. Olefin Metathesis Catalyzed by a Hoveyda-Grubbs-like Complex Chelated to Bis(2-mercaptoimidazolyl) Methane: A Predictive DFT Study.
J Phys Chem A 2022;
126:720-732. [PMID:
35080885 PMCID:
PMC8842278 DOI:
10.1021/acs.jpca.1c09336]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Although highly selective
complexes for the cross-metathesis of
olefins, particularly oriented toward the productive metathesis of Z-olefins, have been reported in recent years, there is
a constant need to design and prepare new and improved catalysts for
this challenging reaction. In this work, guided by density functional
theory (DFT) calculations, the performance of a Ru-based catalyst
chelated to a sulfurated pincer in the olefin metathesis was computationally
assessed. The catalyst was designed based on the Hoveyda–Grubbs
catalyst (SIMes)Cl2Ru(=CH–o–OiPrC6H4) through the substitution
of chlorides with the chelator bis(2-mercaptoimidazolyl)methane. The
obtained thermodynamic and kinetic data of the initiation phase through
side- and bottom-bound mechanisms suggest that this system is a versatile
catalyst for olefin metathesis, as DFT predicts the highest energy
barrier of the catalytic cycle of ca. 20 kcal/mol, which is comparable
to those corresponding to the Hoveyda–Grubbs-type catalysts.
Moreover, in terms of the stereoselectivity evaluated through the
propagation phase in the metathesis of propene–propene to 2-butene,
our study reveals that the Z isomer can be formed
under a kinetic control. We believe that this is an interesting outcome
in the context of future exploration of Ru-based catalysts with sulfurated
chelates in the search for high stereoselectivity in selected reactions.
Collapse