1
|
Kohn JT, Grimme S, Hansen A. A semi-automated quantum-mechanical workflow for the generation of molecular monolayers and aggregates. J Chem Phys 2024; 161:124707. [PMID: 39319657 DOI: 10.1063/5.0230341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Organic electronics (OE) such as organic light-emitting diodes or organic solar cells represent an important and innovative research area to achieve global goals like environmentally friendly energy production. To accelerate OE material discovery, various computational methods are employed. For the initial generation of structures, a molecular cluster approach is employed. Here, we present a semi-automated workflow for the generation of monolayers and aggregates using the GFNn-xTB methods and composite density functional theory (DFT-3c). Furthermore, we present the novel D11A8MERO dye interaction energy benchmark with high-level coupled cluster reference interaction energies for the assessment of efficient quantum chemical and force-field methods. GFN2-xTB performs similar to low-cost DFT, reaching DFT/mGGA accuracy at two orders of magnitude lower computational cost. As an example application, we investigate the influence of the dye aggregate size on the optical and electrical properties and show that at least four molecules in a cluster model are needed for a qualitatively reasonable description.
Collapse
Affiliation(s)
- J T Kohn
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany
| | - S Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany
| | - A Hansen
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany
| |
Collapse
|
2
|
Karton A, Foller T, Joshi R. Catalyzing epoxy oxygen migration on the basal surface of graphene oxide using strong hydrogen-bond donors. Chem Commun (Camb) 2024; 60:7049-7052. [PMID: 38895846 DOI: 10.1039/d4cc01911c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
High-level double-hybrid DFT simulations reveal that strong hydrogen-bond-donor catalysts (e.g., ethylene glycol, guanidine, and thiourea) significantly accelerate the migration of epoxy oxygen on the surface of graphene oxide, enhancing the reaction rate by 6-12 orders of magnitude. These results shed light on previously puzzling experimental observations.
Collapse
Affiliation(s)
- Amir Karton
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia.
| | - Tobias Foller
- School of Materials Science and Engineering, University of New South Wales Sydney, NSW, 2052, Australia
| | - Rakesh Joshi
- School of Materials Science and Engineering, University of New South Wales Sydney, NSW, 2052, Australia
| |
Collapse
|
3
|
Rummel L, Schreiner PR. Advances and Prospects in Understanding London Dispersion Interactions in Molecular Chemistry. Angew Chem Int Ed Engl 2024; 63:e202316364. [PMID: 38051426 DOI: 10.1002/anie.202316364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
London dispersion (LD) interactions are the main contribution of the attractive part of the van der Waals potential. Even though LD effects are the driving force for molecular aggregation and recognition, the role of these omnipresent interactions in structure and reactivity had been largely underappreciated over decades. However, in the recent years considerable efforts have been made to thoroughly study LD interactions and their potential as a chemical design element for structures and catalysis. This was made possible through a fruitful interplay of theory and experiment. This review highlights recent results and advances in utilizing LD interactions as a structural motif to understand and utilize intra- and intermolecularly LD-stabilized systems. Additionally, we focus on the quantification of LD interactions and their fundamental role in chemical reactions.
Collapse
Affiliation(s)
- Lars Rummel
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| | - Peter R Schreiner
- Institute of Organic Chemistry, Justus Liebig University, Heinrich-Buff-Ring 17, 35392, Giessen, Germany
| |
Collapse
|
4
|
Weh M, Kroeger AA, Anhalt O, Karton A, Würthner F. Mutual induced fit transition structure stabilization of corannulene's bowl-to-bowl inversion in a perylene bisimide cyclophane. Chem Sci 2024; 15:609-617. [PMID: 38179532 PMCID: PMC10762775 DOI: 10.1039/d3sc05341e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/25/2023] [Indexed: 01/06/2024] Open
Abstract
Corannulene is known to undergo a fast bowl-to-bowl inversion at r.t. via a planar transition structure (TS). Herein we present the catalysis of this process within a perylene bisimide (PBI) cyclophane composed of chirally twisted, non-planar chromophores, linked by para-xylylene spacers. Variable temperature NMR studies reveal that the bowl-to-bowl inversion is significantly accelerated within the cyclophane template despite the structural non-complementarity between the binding site of the host and the TS of the guest. The observed acceleration corresponds to a decrease in the bowl-to-bowl inversion barrier of 11.6 kJ mol-1 compared to the uncatalyzed process. Comparative binding studies for corannulene (20 π-electrons) and other planar polycyclic aromatic hydrocarbons (PAHs) with 14 to 24 π-electrons were applied to rationalize this barrier reduction. They revealed high binding constants that reach, in tetrachloromethane as a solvent, the picomolar range for the largest guest coronene. Computational models corroborate these experimental results and suggest that both TS stabilization and ground state destabilization contribute to the observed catalytic effect. Hereby, we find a "mutual induced fit" between host and guest in the TS complex, such that mutual geometric adaptation of the energetically favored planar TS and curved π-systems of the host results in an unprecedented non-planar TS of corannulene. Concomitant partial planarization of the PBI units optimizes noncovalent TS stabilization by π-π stacking interactions. This observation of a "mutual induced fit" in the TS of a host-guest complex was further validated experimentally by single crystal X-ray analysis of a host-guest complex with coronene as a qualitative transition state analogue.
Collapse
Affiliation(s)
- Manuel Weh
- Institut für Organische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Asja A Kroeger
- School of Molecular Sciences, The University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
- Research School of Chemistry, Australian National University Canberra ACT 2601 Australia
- Institute for Nanoscale Science & Technology, Flinders University Adelaide South Australia 5042 Australia
| | - Olga Anhalt
- Center for Nanosystems Chemistry, Bavarian Polymer Institute, Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| | - Amir Karton
- School of Molecular Sciences, The University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia
- School of Science and Technology, University of New England Armidale NSW 2351 Australia
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg Am Hubland 97074 Würzburg Germany
- Center for Nanosystems Chemistry, Bavarian Polymer Institute, Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Germany
| |
Collapse
|
5
|
Sripaturad P, Karton A, Stevens K, Thamwattana N, Baowan D, Cox BJ. Catalytic effect of graphene on the inversion of corannulene using a continuum approach with the Lennard-Jones potential. NANOSCALE ADVANCES 2023; 5:4571-4578. [PMID: 37638156 PMCID: PMC10448309 DOI: 10.1039/d3na00349c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023]
Abstract
The catalytic effect of graphene on the corannulene bowl-to-bowl inversion is confirmed in this paper using a pair-wise dispersion interaction model. In particular, a continuum approach together with the Lennard-Jones potential are adopted to determine the interaction energy between corannulene and graphene. These results are consistent with previous quantum chemical studies, which showed that a graphene sheet reduces the barrier height for the bowl-to-bowl inversion in corannulene. However, the results presented here demonstrate, for the first time, that the catalytic activity of graphene can be reproduced using pair-wise dispersion interactions alone. This demonstrates the major role that pair-wise dispersion interactions play in the catalytic activity of graphene.
Collapse
Affiliation(s)
- Panyada Sripaturad
- Department of Mathematics, Faculty of Science, Mahidol University Rama VI Rd Bangkok 10400 Thailand
| | - Amir Karton
- School of Science and Technology, University of New England Armidale NSW 2351 Australia
| | - Kyle Stevens
- School of Information and Physical Sciences, University of Newcastle Callaghan NSW 2308 Australia
| | - Ngamta Thamwattana
- School of Information and Physical Sciences, University of Newcastle Callaghan NSW 2308 Australia
| | - Duangkamon Baowan
- Department of Mathematics, Faculty of Science, Mahidol University Rama VI Rd Bangkok 10400 Thailand
| | - Barry J Cox
- School of Mathematical Sciences, University of Adelaide Adelaide SA 5005 Australia
| |
Collapse
|
6
|
Planarization of negatively curved [7] circulene on a graphene monolayer. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2023.111853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
7
|
Liu ZX, Yang L, Chen YG, Tian ZY, Yang ZY. Noncovalent wedging effect catalyzed the cis to syn transformation of a surface-adsorbed polymer backbone toward an unusual thermodynamically stable supramolecular product. Phys Chem Chem Phys 2022; 24:30010-30016. [PMID: 36472299 DOI: 10.1039/d2cp04184g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The significant influence of noncovalent interactions on catalytic processes has been recently appreciated but is still in its infancy. In this report, it is found that wedging Me-PTCDI (small-molecule) between the alkyl chains of PffBT4T-2OD (polymer) and a graphite substrate can reduce the energy barrier of flipping over the surface-adsorbed alkylthiophene group from the cis to syn conformation, revealing the catalytic role of Me-PTCDI via a noncovalent wedging effect. The wedging of Me-PTCDI brings the interactions between the alkyl chains and substrate to a very weak level by lifting up the alkyl chains, which eliminates the major hindrance of the flipping process to one main factor: the torsion of the dihedral angles of the thiophene group. The Me-PTCDI/syn PffBT4T-2OD arrangement shows unusual stability compared to the cis one because the syn conformation allows the alkyl chains to construct dense lamella and facilitates interactions between Me-PTCDI and the syn PffBT4T-2OD backbones. The results are helpful for boosting the development of noncovalent catalysis and bottom-up fabrications toward devices functionalized at a molecular level.
Collapse
Affiliation(s)
- Zhi-Xuan Liu
- School of Chemical Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, P. R. China.
| | - Ling Yang
- School of Chemical Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, P. R. China.
| | - Yong-Gang Chen
- Dalian University of Technology, No. 2 Linggong road, Dalian, 116024, Liaoning province, P. R. China
| | - Zhi-Yuan Tian
- School of Chemical Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, P. R. China.
| | - Zhi-Yong Yang
- School of Chemical Science, University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, P. R. China.
| |
Collapse
|
8
|
Karton A. π–π interactions between benzene and graphene by means of large-scale DFT-D4 calculations. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Helicene adsorption on graphene, hexagonal boron nitride, graphane, and fluorographane. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
James A, Swathi RS. Modeling the Adsorption of Polycyclic Aromatic Hydrocarbons on Graphynes: An Improved Lennard-Jones Formulation. J Phys Chem A 2022; 126:3472-3485. [PMID: 35609299 DOI: 10.1021/acs.jpca.2c01777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Research on the development of theoretical methodologies for modeling noncovalent interactions governing the adsorption of polycyclic aromatic hydrocarbons (PAHs) on graphene and other two-dimensional materials is being intensely pursued in recent times. Highly accurate empirical potentials have emerged as a viable alternative to first-principles calculations for performing large-scale simulations. Herein, we report exploration of the potential energy surfaces for the adsorption of cata-condensed and peri-condensed PAHs on graphynes (GYs) using the improved Lennard-Jones (ILJ) potential. Initially, the ILJ potential is parametrized against benchmark electronic structure calculations performed on a selected set of PAH-GY complexes using dispersion-corrected density functional theory. The accuracy of the parametrization scheme is then assessed by a comparison of the adsorption features predicted from the ILJ potential with those computed using electronic structure calculations. The potential energy profiles as well as the single point energy calculations and geometry reoptimizations performed on the minimum-energy configurations predicted by the ILJ potential for a broader range of PAH-GY complexes provided a validation of the parametrization scheme. Finally, by an extrapolation of the PAH adsorption energies on various GYs, we estimated the interlayer cohesion energies for the van der Waals bilayer heterostructures of GYs with graphene to be in the range of 25-50 meV/atom.
Collapse
Affiliation(s)
- Anto James
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Rotti Srinivasamurthy Swathi
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| |
Collapse
|
11
|
John C, Swathi RS. An anisotropic dressed pairwise potential model for the adsorption of noble gases on boron nitride sheets. Phys Chem Chem Phys 2022; 24:2554-2566. [PMID: 35024709 DOI: 10.1039/d1cp04815e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Development of empirical potentials with accurate parameterization is indispensable while modeling large-scale systems. Herein, we report accurate parameterization of an anisotropic dressed pairwise potential model (PPM) for probing the adsorption of noble gases, He, Ne, Ar and Kr on boron nitride sheets. For the noble gas binding on B48N48H24, we carried out a least-squares fit analysis of the dispersion and dispersionless contributions of the interaction potential separately. The transferability of the parameters for a range of molecular model systems of boron nitride is further established. The dressed PPM is then used in conjunction with a global optimization technique, namely particle swarm optimization (PSO) to assess the possibility of performing large-scale simulations with the PPM-PSO methodology. The results obtained for the adsorption of 2-5 noble gases on BN sheets establish the proof-of-concept, encouraging the pursuit of large-scale simulations using the PPM-PSO approach.
Collapse
Affiliation(s)
- Chris John
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Thiruvananthapuram, India.
| | - Rotti Srinivasamurthy Swathi
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Thiruvananthapuram, India.
| |
Collapse
|
12
|
Kroeger AA, Karton A. Graphene-induced planarization of cyclooctatetraene derivatives. J Comput Chem 2022; 43:96-105. [PMID: 34677827 DOI: 10.1002/jcc.26774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/10/2021] [Accepted: 10/08/2021] [Indexed: 11/09/2022]
Abstract
Stable equilibrium compounds containing a planar antiaromatic cyclooctatetraene (COT) ring are promising candidates for organic electronic devices such as organic semiconductor transistors. The planarization of COT by incorporation into rigid planar π-systems, as well as by oxidation or reduction has attracted considerable attention in recent years. Using dispersion-corrected density functional theory calculations, we explore an alternative approach of planarizing COT derivatives by adsorption onto graphene. We show that strong π-π stacking interactions between graphene and COT derivatives induce a planar structure with an antiaromatic central COT ring. In addition to being reversible, this strategy provides a novel approach for planarizing COT without the need for incorporation into a rigid structure, atomic substitution, oxidation, or reduction.
Collapse
Affiliation(s)
- Asja A Kroeger
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| | - Amir Karton
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
| |
Collapse
|
13
|
Kroeger AA, Karton A. π-π Catalysis in Carbon Flatland-Flipping [8]Annulene on Graphene. Chemistry 2021; 27:3420-3426. [PMID: 33295080 DOI: 10.1002/chem.202004045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Indexed: 11/10/2022]
Abstract
Noncovalent interactions are an integral part of the modern catalysis toolbox. Although stronger noncovalent interactions such as hydrogen bonding are commonly the main driving force of catalysis, π-π interactions typically provide smaller additional stabilizations, for example, to afford selectivity enhancements. Here, it is shown computationally that pristine graphene flakes may efficiently catalyze the skeletal inversions of various benzannulated cyclooctatetraene derivatives, providing an example of a catalytic process driven solely by π-π stacking interactions. Hereby, the catalytic effect results from disproportionate shape complementarity between catalyst and transition structure compared with catalyst and reactant. An energy decomposition analysis reveals electrostatic and, especially with increasing system size, to a larger extent, dispersion interactions as the origin of stabilization.
Collapse
Affiliation(s)
- Asja A Kroeger
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - Amir Karton
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| |
Collapse
|
14
|
Solel E, Pappo D, Reany O, Mejuch T, Gershoni-Poranne R, Botoshansky M, Stanger A, Keinan E. Flat corannulene: when a transition state becomes a stable molecule. Chem Sci 2020; 11:13015-13025. [PMID: 34094486 PMCID: PMC8163244 DOI: 10.1039/d0sc04566g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/16/2020] [Indexed: 12/17/2022] Open
Abstract
Flat corannulene has been considered so far only as a transition state of the bowl-to-bowl inversion process. This study was driven by the prediction that substituents with strong steric repulsion could destabilize the bowl-shaped conformation of this molecule to such an extent that the highly unstable planar geometry would become an isolable molecule. To examine the substituents' effect on the corannulene bowl depth, optimized structures for the highly-congested decakis(t-butylsulfido)corannulene were calculated. The computations, performed with both the M06-2X/def2-TZVP and the B3LYP/def2-TZVP methods (the latter with and without Grimme's D3 dispersion correction), predict that this molecule can achieve two minimum structures: a flat carbon framework and a bowl-shaped structure, which are very close in energy. This rather unusual compound was easily synthesized from decachlorocorannulene under mild reaction conditions, and X-ray crystallographic studies gave similar results to the theoretical predictions. This compound crystallized in two different polymorphs, one exhibiting a completely flat corannulene core and the other having a bowl-shaped conformation.
Collapse
Affiliation(s)
- Ephrath Solel
- The Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City Haifa 3200001 Israel
| | - Doron Pappo
- Department of Chemistry, Ben-Gurion University of the Negev Beer-Sheva 84105 Israel
| | - Ofer Reany
- Avinoam Adam Department of Natural Sciences, The Open University of Israel 1 University Road, P.O. Box 808 Ra'anana 4353701 Israel
| | - Tom Mejuch
- The Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City Haifa 3200001 Israel
| | - Renana Gershoni-Poranne
- The Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City Haifa 3200001 Israel
| | - Mark Botoshansky
- The Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City Haifa 3200001 Israel
| | - Amnon Stanger
- The Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City Haifa 3200001 Israel
| | - Ehud Keinan
- The Schulich Faculty of Chemistry, Technion - Israel Institute of Technology Technion City Haifa 3200001 Israel
| |
Collapse
|