1
|
Deng J, Liang J, Bai S. Learning Intermolecular Electronic Coupling with Molecular-Orbital-Based Descriptors. J Phys Chem Lett 2024:12551-12560. [PMID: 39680729 DOI: 10.1021/acs.jpclett.4c03080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Electronic coupling is the key parameter to determine the rate of intermolecular electron transfer and energy transfer at excited states. When excited states are involved, the couplings are state-specific, as they originate from the interactions between different molecular orbitals (MOs). Based on the MO overlap description of the electron transfer (ET) and excitation energy transfer (EET) couplings taken as the domain knowledge, here we propose a graphic molecular orbital (MO) based descriptor to predict intermolecular electronic couplings. As the MOs are characterized by the spatial distribution of their wave functions, namely, the size and sign of the lobes, we transform the grid points of a MO into two feature vectors containing the quantum and spatial information. Then, inspired by the MO overlap description of the electronic couplings, we build the descriptors by multiplying the vectors for paired MOs. Together with a deep neural network (DNN) model, we learn the couplings of hole transfer (HT), electron transfer (ET), and Dexter energy transfer (DET). For the couplings of naphthalene dimers, high accuracy of learning is achieved by our approach compared with the results from quantum chemical (QC) calculations with a small size of training data. Therefore, the MO-pair-based descriptor shows the ability to characterize MO interaction for the high performance learning of electronic couplings and implies the potential of this strategy for other state-specific properties of excited molecular systems.
Collapse
Affiliation(s)
- Jingheng Deng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayi Liang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuming Bai
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Kuntz D, Wilson AK. Machine learning, artificial intelligence, and chemistry: how smart algorithms are reshaping simulation and the laboratory. PURE APPL CHEM 2022. [DOI: 10.1515/pac-2022-0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Machine learning and artificial intelligence are increasingly gaining in prominence through image analysis, language processing, and automation, to name a few applications. Machine learning is also making profound changes in chemistry. From revisiting decades-old analytical techniques for the purpose of creating better calibration curves, to assisting and accelerating traditional in silico simulations, to automating entire scientific workflows, to being used as an approach to deduce underlying physics of unexplained chemical phenomena, machine learning and artificial intelligence are reshaping chemistry, accelerating scientific discovery, and yielding new insights. This review provides an overview of machine learning and artificial intelligence from a chemist’s perspective and focuses on a number of examples of the use of these approaches in computational chemistry and in the laboratory.
Collapse
Affiliation(s)
- David Kuntz
- Department of Chemistry , University of North Texas , Denton , TX 76201 , USA
| | - Angela K. Wilson
- Department of Chemistry , Michigan State University , East Lansing , MI 48824 , USA
| |
Collapse
|
3
|
Hino K, Kurashige Y. Matrix Product State Formulation of the MCTDH Theory in Local Mode Representations for Anharmonic Potentials. J Chem Theory Comput 2022; 18:3347-3356. [PMID: 35606892 DOI: 10.1021/acs.jctc.2c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The matrix product state formulation of the multiconfiguration time-dependent Hartree theory, MPS-MCTDH, reported previously [Kurashige, J. Chem. Phys. 2018, 19, 194114] is extended to realistic anharmonic potentials with n-mode representations beyond the linear vibronic coupling model. For realistic vibrational potentials, the local mode representation should give a more compact representation of the potentials, i.e., lowering the dimensionality of the entanglements, than the normal coordinates, and the MPS-MCTDH formulation should work more efficiently and maintain the accuracy with a small bond dimension of the MPS ansatz. In fact, it was confirmed that the use of the local coordinates made the interaction matrices diagonal dominant and the number of terms in the n-body expansion of the potentials was significantly reduced. The method was applied to the IR spectrum of the CH2O molecule, the zero-point energies, and the vibrational energy redistribution dynamics of polyenes C2nH2n+2. The results showed that the efficiency of the MPS-MCTDH method is significantly accelerated by the use of local coordinates even if the long-range interactions are included in the potential.
Collapse
Affiliation(s)
- Kentaro Hino
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yuki Kurashige
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
4
|
Habershon S. Program Synthesis of Sparse Algorithms for Wave Function and Energy Prediction in Grid-Based Quantum Simulations. J Chem Theory Comput 2022; 18:2462-2478. [PMID: 35293216 PMCID: PMC9009083 DOI: 10.1021/acs.jctc.2c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have recently shown how program synthesis (PS), or the concept of "self-writing code", can generate novel algorithms that solve the vibrational Schrödinger equation, providing approximations to the allowed wave functions for bound, one-dimensional (1-D) potential energy surfaces (PESs). The resulting algorithms use a grid-based representation of the underlying wave function ψ(x) and PES V(x), providing codes which represent approximations to standard discrete variable representation (DVR) methods. In this Article, we show how this inductive PS strategy can be improved and modified to enable prediction of both vibrational wave functions and energy eigenvalues of representative model PESs (both 1-D and multidimensional). We show that PS can generate algorithms that offer some improvements in energy eigenvalue accuracy over standard DVR schemes; however, we also demonstrate that PS can identify accurate numerical methods that exhibit desirable computational features, such as employing very sparse (tridiagonal) matrices. The resulting PS-generated algorithms are initially developed and tested for 1-D vibrational eigenproblems, before solution of multidimensional problems is demonstrated; we find that our new PS-generated algorithms can reduce calculation times for grid-based eigenvector computation by an order of magnitude or more. More generally, with further development and optimization, we anticipate that PS-generated algorithms based on effective Hamiltonian approximations, such as those proposed here, could be useful in direct simulations of quantum dynamics via wave function propagation and evaluation of molecular electronic structure.
Collapse
Affiliation(s)
- Scott Habershon
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
5
|
Richings GW, Habershon S. Predicting Molecular Photochemistry Using Machine-Learning-Enhanced Quantum Dynamics Simulations. Acc Chem Res 2022; 55:209-220. [PMID: 34982533 DOI: 10.1021/acs.accounts.1c00665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The processes which occur after molecules absorb light underpin an enormous range of fundamental technologies and applications, including photocatalysis to enable new chemical transformations, sunscreens to protect against the harmful effects of UV overexposure, efficient photovoltaics for energy generation from sunlight, and fluorescent probes to image the intricate details of complex biomolecular structures. Reflecting this broad range of applications, an enormously versatile set of experiments are now regularly used to interrogate light-driven chemical dynamics, ranging from the typical ultrafast transient absorption spectroscopy used in many university laboratories to the inspiring central facilities around the world, such as the next-generation of X-ray free-electron lasers.Computer simulations of light-driven molecular and material dynamics are an essential route to analyzing the enormous amount of transient electronic and structural data produced by these experimental sources. However, to date, the direct simulation of molecular photochemistry remains a frontier challenge in computational chemical science, simultaneously demanding the accurate treatment of molecular electronic structure, nuclear dynamics, and the impact of nonadiabatic couplings.To address these important challenges and to enable new computational methods which can be integrated with state-of-the-art experimental capabilities, the past few years have seen a burst of activity in the development of "direct" quantum dynamics methods, merging the machine learning of potential energy surfaces (PESs) and nonadiabatic couplings with accurate quantum propagation schemes such as the multiconfiguration time-dependent Hartree (MCTDH) method. The result of this approach is a new generation of direct quantum dynamics tools in which PESs are generated in tandem with wave function propagation, enabling accurate "on-the-fly" simulations of molecular photochemistry. These simulations offer an alternative route toward gaining quantum dynamics insights, circumventing the challenge of generating ab initio electronic structure data for PES fitting by instead only demanding expensive energy evaluations as and when they are needed.In this Account, we describe the chronological evolution of our own contributions to this field, focusing on describing the algorithmic developments that enable direct MCTDH simulations for complex molecular systems moving on multiple coupled electronic states. Specifically, we highlight active learning strategies for generating PESs during grid-based quantum chemical dynamics simulations, and we discuss the development and impact of novel diabatization schemes to enable direct grid-based simulations of photochemical dynamics; these developments are highlighted in a series of benchmark molecular simulations of systems containing multiple nuclear degrees of freedom moving on multiple coupled electronic states. We hope that the ongoing developments reported here represent a major step forward in tools for modeling excited-state chemistry such as photodissociation, proton and electron transfer, and ultrafast energy dissipation in complex molecular systems.
Collapse
Affiliation(s)
- Gareth W. Richings
- Department of Chemistry, University of Warwick, Coventry, United Kingdom CV4 7AL
| | - Scott Habershon
- Department of Chemistry, University of Warwick, Coventry, United Kingdom CV4 7AL
| |
Collapse
|
6
|
How WB, Wang B, Chu W, Kovalenko SM, Tkatchenko A, Prezhdo O. Dimensionality Reduction in Machine Learning for Nonadiabatic Molecular Dynamics: Effectiveness of Elemental Sublattices in Lead Halide Perovskites. J Chem Phys 2022; 156:054110. [DOI: 10.1063/5.0078473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wei Bin How
- Chemistry, Nanyang Technological University School of Physical and Mathematical Sciences, Singapore
| | - Bipeng Wang
- University of Southern California, United States of America
| | - Weibin Chu
- Chemistry, University of Southern California, United States of America
| | | | | | - Oleg Prezhdo
- Chemistry, University of Southern California, United States of America
| |
Collapse
|
7
|
Richings GW, Habershon S. Analyzing Grid-Based Direct Quantum Molecular Dynamics Using Non-Linear Dimensionality Reduction. Molecules 2021; 26:molecules26247418. [PMID: 34946499 PMCID: PMC8708769 DOI: 10.3390/molecules26247418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 11/18/2022] Open
Abstract
Grid-based schemes for simulating quantum dynamics, such as the multi-configuration time-dependent Hartree (MCTDH) method, provide highly accurate predictions of the coupled nuclear and electronic dynamics in molecular systems. Such approaches provide a multi-dimensional, time-dependent view of the system wavefunction represented on a coordinate grid; in the case of non-adiabatic simulations, additional information about the state populations adds a further layer of complexity. As such, wavepacket motion on potential energy surfaces which couple many nuclear and electronic degrees-of-freedom can be extremely challenging to analyse in order to extract physical insight beyond the usual expectation-value picture. Here, we show that non-linear dimensionality reduction (NLDR) methods, notably diffusion maps, can be adapted to extract information from grid-based wavefunction dynamics simulations, providing insight into key nuclear motions which explain the observed dynamics. This approach is demonstrated for 2-D and 9-D models of proton transfer in salicylaldimine, as well as 8-D and full 12-D simulations of cis-trans isomerization in ethene; these simulations demonstrate how NLDR can provide alternative views of wavefunction dynamics, and also highlight future developments.
Collapse
|
8
|
Secor M, Soudackov AV, Hammes-Schiffer S. Artificial Neural Networks as Propagators in Quantum Dynamics. J Phys Chem Lett 2021; 12:10654-10662. [PMID: 34704767 DOI: 10.1021/acs.jpclett.1c03117] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The utilization of artificial neural networks (ANNs) provides strategies for accelerating molecular simulations. Herein, ANNs are implemented as propagators of the time-dependent Schrödinger equation to simulate the quantum dynamics of systems with time-dependent potentials. These ANN propagators are trained to map nonstationary wavepackets from a given time to a future time within the discrete variable representation. Each propagator is trained for a specified time step, and iterative application of the propagator enables the propagation of wavepackets over long time scales. Such ANN propagators are developed and applied to one- and two-dimensional proton transfer systems, which exhibit nuclear quantum effects such as hydrogen tunneling. These ANN propagators are trained for either a specific time-independent potential or general potentials that can be time-dependent. Hierarchical, multiple time step algorithms enable parallelization, and the extension to higher dimensions is straightforward. This strategy is applicable to quantum dynamical simulations of diverse chemical and biological processes.
Collapse
Affiliation(s)
- Maxim Secor
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Alexander V Soudackov
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Sharon Hammes-Schiffer
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| |
Collapse
|
9
|
Wu Y, Prezhdo N, Chu W. Increasing Efficiency of Nonadiabatic Molecular Dynamics by Hamiltonian Interpolation with Kernel Ridge Regression. J Phys Chem A 2021; 125:9191-9200. [PMID: 34636570 DOI: 10.1021/acs.jpca.1c05105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nonadiabatic (NA) molecular dynamics (MD) goes beyond the adiabatic Born-Oppenheimer approximation to account for transitions between electronic states. Such processes are common in molecules and materials used in solar energy, optoelectronics, sensing, and many other fields. NA-MD simulations are much more expensive compared to adiabatic MD due to the need to compute excited state properties and NA couplings (NACs). Similarly, application of machine learning (ML) to NA-MD is more challenging compared with adiabatic MD. We develop an NA-MD simulation strategy in which an adiabatic MD trajectory, which can be generated with a ML force field, is used to sample excitation energies and NACs for a small fraction of geometries, while the properties for the remaining geometries are interpolated with kernel ridge regression (KRR). This ML strategy allows for one to perform NA-MD under the classical path approximation, increasing the computational efficiency by over an order of magnitude. Compared to neural networks, KRR requires little parameter tuning, saving efforts on model building. The developed strategy is demonstrated with two metal halide perovskites that exhibit complicated MD and are actively studied for various applications.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Natalie Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Weibin Chu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
10
|
Abstract
Theoretical simulations of electronic excitations and associated processes in molecules are indispensable for fundamental research and technological innovations. However, such simulations are notoriously challenging to perform with quantum mechanical methods. Advances in machine learning open many new avenues for assisting molecular excited-state simulations. In this Review, we track such progress, assess the current state of the art and highlight the critical issues to solve in the future. We overview a broad range of machine learning applications in excited-state research, which include the prediction of molecular properties, improvements of quantum mechanical methods for the calculations of excited-state properties and the search for new materials. Machine learning approaches can help us understand hidden factors that influence photo-processes, leading to a better control of such processes and new rules for the design of materials for optoelectronic applications.
Collapse
|
11
|
Ferguson AL, Hachmann J, Miller TF, Pfaendtner J. The Journal of Physical Chemistry A/ B/ C Virtual Special Issue on Machine Learning in Physical Chemistry. J Phys Chem A 2021; 124:9113-9118. [PMID: 33147969 DOI: 10.1021/acs.jpca.0c09205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Ibele LM, Lassmann Y, Martínez TJ, Curchod BFE. Comparing (stochastic-selection) ab initio multiple spawning with trajectory surface hopping for the photodynamics of cyclopropanone, fulvene, and dithiane. J Chem Phys 2021; 154:104110. [DOI: 10.1063/5.0045572] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Lea M. Ibele
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Yorick Lassmann
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Todd J. Martínez
- Department of Chemistry, Stanford University, Stanford, California 94305, USA and PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Basile F. E. Curchod
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| |
Collapse
|
13
|
Ferguson AL, Hachmann J, Miller TF, Pfaendtner J. The Journal of Physical Chemistry A/ B/ C Virtual Special Issue on Machine Learning in Physical Chemistry. J Phys Chem B 2021; 124:9767-9772. [PMID: 33147970 DOI: 10.1021/acs.jpcb.0c09206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|