1
|
Orbán B, Höltzl T. Acetylene and Ethylene Adsorption during Floating Fe Catalyst Formation at the Onset of Carbon Nanotube Growth and the Effect of Sulfur Poisoning: a DFT Study. Inorg Chem 2024; 63:13624-13635. [PMID: 38986139 PMCID: PMC11270998 DOI: 10.1021/acs.inorgchem.4c01830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024]
Abstract
Here, we investigated the adsorption of acetylene and ethylene on iron clusters and nanoparticles, which is a crucial aspect in the nascent phase of carbon nanotube growth by floating catalyst chemical vapor deposition (FCCVD). The effect of sulfur on adsorption was also studied due to its indispensable role in the process and its commonly known impact on metal catalyst poisoning. We performed systematic density functional theory (DFT) computations, considering numerous adsorption configurations and iron particles of various sizes (Fen, n = 3-10, 13, 55). We found that acetylene binds significantly more strongly than ethylene and prefers different adsorption sites. The presence of sulfur decreased the adsorption strength only in the immediate proximity of the adsorbate, suggesting that the effect of sulfur is mainly of steric origin while electronic effects play only a minor role. Higher sulfur coverage of the catalyst surface significantly weakened the binding of acetylene or ethylene. To further investigate this interaction, Bader's atoms in molecules (AIM) analysis and charge density difference (CDD) were used, which showed electron transfer from iron clusters or nanoparticles to the adsorbate molecules. The charge transfer exhibited a decreasing trend as sulfur coverage increased. These results can also contribute to the understanding of other iron-based catalytic processes involving hydrocarbons and sulfur, such as the Fischer-Tropsch synthesis.
Collapse
Affiliation(s)
- Balázs Orbán
- Department
of Inorganic and Analytical Chemistry, Budapest
University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Tibor Höltzl
- Department
of Inorganic and Analytical Chemistry, Budapest
University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- HUN-REN-BME
Computation Driven Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- Furukawa
Electric Institute of Technology, Késmárk utca 28/A, H-1158 Budapest, Hungary
| |
Collapse
|
2
|
Karnamkkott HS, Das S, Mondal T, Mondal KC. Small molecule activation by sila/germa boryne species. J Comput Chem 2024; 45:804-819. [PMID: 38135467 DOI: 10.1002/jcc.27275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/19/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
The inability of p-block elements to participate in π-backbonding restricts them from activating small molecules like CO, H2 , and so forth. However, the development of the main group metallomimetics became a new pathway, where the main-group elements like boron can bind and activate small molecules like CO and H2 . The concept of the frustrated Lewis pair, Boron-Boron multiple bonds, and borylene are previously illustrated. Some of these reported classes of boron species can mimic the jobs of the metal complexes. Hence, we have theoretically studied the binding of CO/N2 molecules at B-center of elusive species like sila/germa boryne stabilized by donor base ligands (cAAC)BE(Me)(L), where E Si, L cAACMe , NHCMe , PMe3 , E Ge, L cAACMe and (NHCMe )BE(Me)(cAACMe )). The substitutional analogues of (cAACR )BSiR1 (cAAC) and E P, L cAACMe ) have been studied by density functional theory (DFT), natural bond orbital, QTAIM calculations and energy decomposition analysis (EDA) coupled with natural orbital for chemical valence (NOCV) analyses. The computed bond dissociation energy and inner stability analyses by the EDA-NOCV method showed that the CO molecule can bind at the B-center of the above-mentioned species due to stronger σ-donor ability while binding of N2 has been theoretically predicted to be weak. The energy barrier for the CO binding is estimated to be 13-14 kcal/mol by transition state calculation. The change of partial triple bond character to single bond nature of the BSi bond and the bending of CBSi bond angle of sila-boryne species are the reason for the activation energy. Our study reveals the ability of such species to bind and activate the CO molecule to mimic the transition metal-containing complexes. We have additionally shown that binding of Fe(CO)4 and Ni(CO)3 is feasible at Si-center after binding of CO at the B-center.
Collapse
Affiliation(s)
| | - Sujit Das
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, India
| | - Totan Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, India
| | | |
Collapse
|
3
|
Wang T, Zhang Z, Jiang S, Yan W, Li S, Zhuang J, Xie H, Li G, Jiang L. Spectroscopic characterization of carbon monoxide activation by neutral chromium carbides. Phys Chem Chem Phys 2024; 26:5962-5968. [PMID: 38293768 DOI: 10.1039/d4cp00011k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Spectroscopic characterization of carbon monoxide activation by neutral metal carbides is of essential importance for understanding the structure-reactivity relationships of catalytic sites, but has been proven to be very challenging owing to the difficulty in size selection. Here, we report a size-specific infrared-vacuum ultraviolet spectroscopic study of the reactions between carbon monoxide with neutral chromium carbides. Quantum chemical calculations were carried out to identify the low-lying structures and to interpret the experimental features. The results reveal that the most stable structure of CrC3(CO)2 consists of a CCO ketenylidene unit and that of CrC4(CO)2 has a semi-bridging CO with a very low CO stretching vibrational frequency at 1821 cm-1. The electron structure analyses show that this semi-bridging CO is highly activated through the delocalized Cr-C-C three-center two-electron (3c-2e) interaction between the antibonding orbitals of CO and the metal carbide skeleton. The formation of these metal carbide carbonyls is found to be both thermodynamically exothermic and kinetically facile in the gas phase. The present findings have important implications for the mechanical understanding of the catalytic processes with isolated metal atoms/clusters dispersed on supports.
Collapse
Affiliation(s)
- Tiantong Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhaoyan Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhui Yan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shangdong Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianxing Zhuang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
4
|
Theoretical study of CO adsorption on FexCuy (x + y = 3) clusters and reactive activity of their carbonyl complexes. Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02918-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Wakizaka M, Chun WJ, Imaoka T, Yamamoto K. Synthesis and magnetic properties of sub-nanosized iron carbides on a carbon support. RSC Adv 2022; 12:3238-3242. [PMID: 35425399 PMCID: PMC8979317 DOI: 10.1039/d1ra09191c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/18/2022] [Indexed: 11/30/2022] Open
Abstract
Iron carbide clusters with near-sub-nanometer size have been synthesized by employing a tetraphenylmethane-cored phenylazomethine dendrimer generation 4 (TPM-DPAG4) as a molecular template. Magnetic measurements reveal that these iron carbide clusters exhibit a magnetization–field hysteresis loop at 300 K. The data indicate that these iron carbide clusters are ferromagnets at room temperature. This study reports the synthesis and ferromagnetism of iron carbide clusters with near-subnanometer size by employing a dendrimer template and carbothermal hydrogen reduction (CHR).![]()
Collapse
Affiliation(s)
- Masanori Wakizaka
- Laboratory for Chemistry and Life Science Institute of Innovative Research, Tokyo Institute of Technology Yokohama 226-8503 Japan
| | - Wang-Jae Chun
- Graduate School of Arts and Sciences, International Christian University Tokyo 181-8585 Japan
| | - Takane Imaoka
- Laboratory for Chemistry and Life Science Institute of Innovative Research, Tokyo Institute of Technology Yokohama 226-8503 Japan
| | - Kimihisa Yamamoto
- Laboratory for Chemistry and Life Science Institute of Innovative Research, Tokyo Institute of Technology Yokohama 226-8503 Japan
| |
Collapse
|
6
|
Espinoza Vázquez A, González-Olvera R, Moreno Cerros D, Negrón Silva G, Figueroa I, Rodríguez Gómez F, Castro M, Miralrio A, Huerta L. Inhibition of acid corrosion in API 5L X52 steel with 1,2,3-triazole derivatized from benzyl alcohol: Experimental and theoretical studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Limon P, Miralrio A, Gómez-Balderas R, Castro M. Small Transition-Metal Mixed Clusters as Activators of the C-O Bond. Fe nCu m-CO ( n + m = 6): A Theoretical Approach. J Phys Chem A 2021; 125:7940-7955. [PMID: 34473929 DOI: 10.1021/acs.jpca.1c05919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Binding of carbon monoxide, CO, and its activation on the surface of the FenCumCO (n + m = 6) clusters are studied in this work. Using the BPW91/6-311 + G(2d) method, we have found that adsorption of the CO molecule on the surface of FenCum (n + m = 6) clusters is thermochemically favorable. Atop and bridge CO cluster coordinations appear for pure, Fe6 and Cu6, and mixed, Fe2Cu4 and Fe4Cu2, clusters. Threefold coordination takes place for Fe3Cu3-CO where the CO bond length, dCO, suffers a largest increase from 1.128 ± 0.014 Å for bare CO up to 1.21 Å. The CO stretching, νCO, as an indicator for the CO bond weakening is redshifted, from 2099 ± 4 cm-1 for isolated CO up to 1690 cm-1 for Fe3Cu3CO and 1678 cm-1 for Fe6CO. In addition, in Cu6CO, the strongest CO bond is slightly weakened as it has a bond length of 1.15 Å and a νCO of 2029 cm-1. There is a correlation between the CO bond weakening and the increase of CO coordination in FenCumCO, which in turns promotes the transference of charges from the metal core into the antibonding orbitals of CO. Substitution of up to three Cu atoms in Fe6 increases the adsorption energies and the activation of CO. Indeed, FenCum (n + m = 6) are promising clusters to catalyze CO dissociation, particularly Fe3Cu3, Fe5Cu, and Fe6, which have large CO bond lengths and CO adsorption energies. The Bader analysis of the electronic density indicates that FenCumCO species with threefold coordination show a rise in the C-O covalent character due to the less electronic polarization. They also show important M → CO charge transfer, which favors the weakening of the CO bond.
Collapse
Affiliation(s)
- Patricio Limon
- Laboratorio de Fisicoquímica Analítica, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli C.P. 54700, Estado de México, México
| | - Alan Miralrio
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo León, México
| | - Rodolfo Gómez-Balderas
- Laboratorio de Fisicoquímica Analítica, Unidad de Investigación Multidisciplinaria, Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli C.P. 54700, Estado de México, México
| | - Miguel Castro
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán C.P. 04510, Ciudad de México, México
| |
Collapse
|