1
|
Kumar A, Andersson GG. A review of ion scattering spectroscopy studies at liquid interfaces with noble gas ion projectiles. Adv Colloid Interface Sci 2024; 333:103302. [PMID: 39340972 DOI: 10.1016/j.cis.2024.103302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Ion scattering spectroscopy (ISS) is an analytical tool that provides direct structural, topographical, and atomic compositional information at interfaces when ions are used as projectiles. Since its development in 1967, ISS is commonly used to obtain quantitative information about solid interfaces. Over the last couple of decades, ISS has emerged as an important technique to probe liquid interfaces and their studies employing ISS has become not uncommon, more so with Neutral impact collision ion scattering spectroscopy (NICISS). Therefore, here the principle of ISS with a particular focus on NICISS and its data evaluation are summarised while reviewing some important studies at vapor-liquid interfaces that provide direct information for molecular orientation of liquids (including ionic liquids), composition and distribution of atoms (or solutes) and charges as a function of depth to gain vast variety of thermodynamical information. Employing ISS such information can be achieved with high depth resolution of ∼1-2 Å (depending on the nature of the experiment). These examples highlight the significance of ISS and show potential for its application for studies related to specific ion effects, atmospheric reaction in aerosol and sea water droplets, and even determining the fate of environmental pollutants like heavy metal ions and per-fluoroalkyl substances (PFAS). Furthermore, some limitations of ISS are also discussed relating to investigation of high-vapor pressure liquids and probing buried interfaces like liquid-liquid interfaces while presenting progresses made in probing solid-liquid interfaces.
Collapse
Affiliation(s)
- Anand Kumar
- Flinders Institute of Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia; CSIRO Environment, Private Bag No. 5, Wembley, WA 6913, Australia
| | - Gunther G Andersson
- Flinders Institute of Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia; Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia.
| |
Collapse
|
2
|
Wagner J, Edel R, Grabnic T, Wiggins B, Sibener SJ. On-surface chemical dynamics of monolayer, bilayer, and many-layered graphene surfaces probed with supersonic beam scattering and STM imaging. Faraday Discuss 2024; 251:435-447. [PMID: 38757539 DOI: 10.1039/d3fd00178d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
We have developed the capability to elucidate interfacial reaction dynamics using an arguably unique combination of supersonic molecular beams combined with in situ STM visualization. These capabilities have been implemented in order to reveal the complex spatiotemporal correlations that govern the oxidation of graphitic systems spanning atomic-, nano-, and meso-length scales. In this study, the 3 nm periodic moiré pattern of monolayer and bilayer graphene on Ru(0001) provides a diverse palette of potential scattering and binding sites at the interface for ground state atomic oxygen. We resolve the site-specificity of atomic oxygen placement on the moiré lattice for both monolayer and bilayer graphene on Ru(0001) with atomic resolution. Angle- and energy-controlled scattering of O(3P) on these interfaces reveals an incisive side-by-side comparison of preferential reactivity of the monolayer surface compared to a more free-standing bilayer graphene ruthenium interface. Morphologically dependent reactivity of many layered graphene (HOPG) and monolayer graphene on Ru(0001) reveal anisotropic on-surface reactivity dependent on the presence of proximal reacted sites or local regions. The kinetics of on-surface oxidation are additionally shown to influence the morphology of surface products by varying the temperature of the interface and flux of reactant species. Such correlations are important in chemisorption, catalysis, materials oxidation and erosion, and film processing-and tunable moiré templated adsorption is a route to well-ordered self-assembled 2D materials for use in next-generation platforms for quantum devices and catalysis. Taken together, these results highlight a new direction in the examination of interfacial reaction dynamics where incident beam kinetic energy and angle of incidence can be used as reaction control parameters, with outcomes such as site-specific reactivity, changes for overall time-evolving mechanisms, and the relative importance of non-adiabatic channels in adsorption all linked to the on-surface fate of chemisorbed species.
Collapse
Affiliation(s)
- Joshua Wagner
- The James Franck Institute and Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| | - Ross Edel
- The James Franck Institute and Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| | - Tim Grabnic
- The James Franck Institute and Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| | - Bryan Wiggins
- The James Franck Institute and Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| | - Steven J Sibener
- The James Franck Institute and Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
3
|
Limmer DT, Götz AW, Bertram TH, Nathanson GM. Molecular Insights into Chemical Reactions at Aqueous Aerosol Interfaces. Annu Rev Phys Chem 2024; 75:111-135. [PMID: 38360527 DOI: 10.1146/annurev-physchem-083122-121620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Atmospheric aerosols facilitate reactions between ambient gases and dissolved species. Here, we review our efforts to interrogate the uptake of these gases and the mechanisms of their reactions both theoretically and experimentally. We highlight the fascinating behavior of N2O5 in solutions ranging from pure water to complex mixtures, chosen because its aerosol-mediated reactions significantly impact global ozone, hydroxyl, and methane concentrations. As a hydrophobic, weakly soluble, and highly reactive species, N2O5 is a sensitive probe of the chemical and physical properties of aerosol interfaces. We employ contemporary theory to disentangle the fate of N2O5 as it approaches pure and salty water, starting with adsorption and ending with hydrolysis to HNO3, chlorination to ClNO2, or evaporation. Flow reactor and gas-liquid scattering experiments probe even greater complexity as added ions, organic molecules, and surfactants alter the interfacial composition and reaction rates. Together, we reveal a new perspective on multiphase chemistry in the atmosphere.
Collapse
Affiliation(s)
- David T Limmer
- Department of Chemistry, University of California, Berkeley, California, USA;
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Kavli Energy NanoScience Institute, Berkeley, California, USA
- Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Andreas W Götz
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California, USA;
| | - Timothy H Bertram
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; ,
| | - Gilbert M Nathanson
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA; ,
| |
Collapse
|
4
|
Kumar A, Craig VSJ, Robertson H, Page AJ, Webber GB, Wanless EJ, Mitchell VD, Andersson GG. Specific Ion Effects at the Vapor-Formamide Interface: A Reverse Hofmeister Series in Ion Concentration Depth Profiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12618-12626. [PMID: 37642667 DOI: 10.1021/acs.langmuir.3c01286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Employing neutral impact collision ion scattering spectroscopy (NICISS), we have directly measured the concentration depth profiles (CDPs) of various monovalent ions at the vapor-formamide interface. NICISS provides CDPs of individual ions by measuring the energy loss of neutral helium atoms backscattered from the solution interface. CDPs at the vapor-formamide interface of Cl-, Br-, I-, Na+, K+, and Cs+ are measured and compared to elucidate the interfacial specific ion trends. We report a reverse Hofmeister series in the presence of inorganic ions (anion and cation) at the vapor-formamide interface relative to the water-vapor interface, and the CDPs are found to be independent of the counterion for most ions studied. Thus, ions at the surface of formamide follow a "Hofmeister paradigm" where the counterion does not impact the ion series. These specific ion trends are complemented with surface tension and X-ray absorption near-edge structure (XANES) measurements on formamide electrolyte solutions.
Collapse
Affiliation(s)
- Anand Kumar
- Flinders Institute of Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| | - Vincent S J Craig
- Department of Materials Physics, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - Hayden Robertson
- College of Science, Engineering, and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Alister J Page
- College of Science, Engineering, and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Grant B Webber
- College of Science, Engineering, and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Erica J Wanless
- College of Science, Engineering, and Environment, University of Newcastle, Callaghan, NSW 2308, Australia
| | | | - Gunther G Andersson
- Flinders Institute of Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
- Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| |
Collapse
|
5
|
Sloutskin E, Tamam L, Sapir Z, Ocko BM, Bain CD, Kuzmenko I, Gog T, Deutsch M. Counterions under a Surface-Adsorbed Cationic Surfactant Monolayer: Structure and Thermodynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12356-12366. [PMID: 36170153 DOI: 10.1021/acs.langmuir.2c02076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The surface adsorption of ionic surfactants is fundamental for many widespread phenomena in life sciences and for a wide range of technological applications. However, direct atomic-resolution structural experimental studies of noncrystalline surface-adsorbed films are scarce. Thus, even the most central physical aspects of these films, such as their charge density, remain uncertain. Consequently, theoretical models based on contradicting assumptions as for the surface films' ionization are widely used for the description and prediction of surface thermodynamics. We employ X-ray reflectivity to obtain the Ångström-scale surface-normal structure of surface-adsorbed films of the cationic surfactant cetyltrimethylammonium bromide (CTAB) in aqueous solutions at several different temperatures and concentrations. In conjunction with published neutron reflectivity data, we determine the surface-normal charge distribution due to the dissociated surfactants' headgroups. The distribution appears to be inconsistent with the Gouy-Chapman model yet consistent with a compact Stern layer model of condensed counterions. The experimental surfactant adsorption thermodynamics conforms well to classical, Langmuir and Kralchevsky, adsorption models. Furthermore, the Kralchevsky model correctly reproduces the observed condensation of counterions, allowing the values of the adsorption parameters to be resolved, based on the combination of the present data and the published surface tension measurements.
Collapse
Affiliation(s)
- Eli Sloutskin
- Physics Department and Bar-Ilan Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Lilach Tamam
- Physics Department and Bar-Ilan Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Zvi Sapir
- Physics Department and Bar-Ilan Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Benjamin M Ocko
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Colin D Bain
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K
| | - Ivan Kuzmenko
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Thomas Gog
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Moshe Deutsch
- Physics Department and Bar-Ilan Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
6
|
Gregory KP, Elliott GR, Robertson H, Kumar A, Wanless EJ, Webber GB, Craig VSJ, Andersson GG, Page AJ. Understanding specific ion effects and the Hofmeister series. Phys Chem Chem Phys 2022; 24:12682-12718. [PMID: 35543205 DOI: 10.1039/d2cp00847e] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Specific ion effects (SIE), encompassing the Hofmeister Series, have been known for more than 130 years since Hofmeister and Lewith's foundational work. SIEs are ubiquitous and are observed across the medical, biological, chemical and industrial sciences. Nevertheless, no general predictive theory has yet been able to explain ion specificity across these fields; it remains impossible to predict when, how, and to what magnitude, a SIE will be observed. In part, this is due to the complexity of real systems in which ions, counterions, solvents and cosolutes all play varying roles, which give rise to anomalies and reversals in anticipated SIEs. Herein we review the historical explanations for SIE in water and the key ion properties that have been attributed to them. Systems where the Hofmeister series is perturbed or reversed are explored, as is the behaviour of ions at the liquid-vapour interface. We discuss SIEs in mixed electrolytes, nonaqueous solvents, and in highly concentrated electrolyte solutions - exciting frontiers in this field with particular relevance to biological and electrochemical applications. We conclude the perspective by summarising the challenges and opportunities facing this SIE research that highlight potential pathways towards a general predictive theory of SIE.
Collapse
Affiliation(s)
- Kasimir P Gregory
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia. .,Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 0200, Australia
| | - Gareth R Elliott
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia.
| | - Hayden Robertson
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia.
| | - Anand Kumar
- Flinders Institute of Nanoscale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5001, Australia
| | - Erica J Wanless
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia.
| | - Grant B Webber
- School of Engineering, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Vincent S J Craig
- Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 0200, Australia
| | - Gunther G Andersson
- Flinders Institute of Nanoscale Science and Technology, College of Science and Engineering, Flinders University, South Australia 5001, Australia
| | - Alister J Page
- Discipline of Chemistry, School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales 2308, Australia.
| |
Collapse
|
7
|
Kumar A, Craig VS, Page AJ, Webber GB, Wanless EJ, Andersson G. Ion Specificity in the Measured Concentration Depth Profile of Ions at the Vapor-Glycerol Interface. J Colloid Interface Sci 2022; 626:687-699. [DOI: 10.1016/j.jcis.2022.06.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/04/2022] [Accepted: 06/21/2022] [Indexed: 10/31/2022]
|
8
|
He J, Zhang H, Ma Y, He Y, Liu Z, Liu J, Wang S, Liu Y, Yu K, Jiang J. Sea spray aerosols intervening phospholipids ozonolysis at the air-water interface. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128466. [PMID: 35739660 DOI: 10.1016/j.jhazmat.2022.128466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/22/2022] [Accepted: 02/08/2022] [Indexed: 06/15/2023]
Abstract
With more than half of the world's population lives along the coast and in its vicinity, the sea spray aerosols (SSAs) with respect to respiratory system impact has attracted increasing attention. In this paper, ozonolysis of model lung phospholipids intervened by salt cations in SSAs at air-water interface was investigated using acoustic levitation-nano-electrospray ionization-mass spectrometry (AL-nano-ESI-MS). The cation species facilitated the interfacial ozonolysis of phospholipids, and this increased ozonolysis showed a dependence on the concentration of salt cations. The charge number and ion radius of salt cations were also investigated, and the times of increased efficiency for phospholipids ozonolysis at the air-water interface were higher with more charge numbers or lower ion radius. The mechanism study revealed that the electrostatic interaction between the electronegative headgroup of phospholipids and the cations disturbed the packing of phospholipids, and resulted in oleyl chains more vulnerable with ozone. Finally, aerosolization of the salt-dominated artificial seawater and real seawater revealed a significant increase on ozonolysis of phospholipid intervened by salt cations. These results reveal SSAs intervening phospholipids interfacial reaction at the molecule level, which will be beneficial to gain the knowledge of the negative health effect concerning the components involved in SSAs.
Collapse
Affiliation(s)
- Jing He
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China
| | - Hong Zhang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China.
| | - Yingxue Ma
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China
| | - Yuwei He
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China
| | - Zhuo Liu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China
| | - Junyu Liu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China
| | - Sheng Wang
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China
| | - Yaqi Liu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China
| | - Kai Yu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, PR China
| | - Jie Jiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150090, PR China.
| |
Collapse
|
9
|
Kong X, Lovrić J, Johansson SM, Prisle NL, Pettersson JBC. Dynamics and Sorption Kinetics of Methanol Monomers and Clusters on Nopinone Surfaces. J Phys Chem A 2021; 125:6263-6272. [PMID: 34236877 PMCID: PMC8311642 DOI: 10.1021/acs.jpca.1c02309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Organic–organic
interactions play important roles in secondary
organic aerosol formation, but the interactions are complex and poorly
understood. Here, we use environmental molecular beam experiments
combined with molecular dynamics simulations to investigate the interactions
between methanol and nopinone, as atmospheric organic proxies. In
the experiments, methanol monomers and clusters are sent to collide
with three types of surfaces, i.e., graphite, thin nopinone coating
on graphite, and nopinone multilayer surfaces, at temperatures between
140 and 230 K. Methanol monomers are efficiently scattered from the
graphite surface, whereas the scattering is substantially suppressed
from nopinone surfaces. The thermal desorption from the three surfaces
is similar, suggesting that all the surfaces have weak or similar
influences on methanol desorption. All trapped methanol molecules
completely desorb within a short experimental time scale at temperatures
of 180 K and above. At lower temperatures, the desorption rate decreases,
and a long experimental time scale is used to resolve the desorption,
where three desorption components are identified. The fast component
is beyond the experimental detection limit. The intermediate component
exhibits multistep desorption character and has an activation energy
of Ea = 0.18 ± 0.03 eV, in good agreement
with simulation results. The slow desorption component is related
to diffusion processes due to the weak temperature dependence. The
molecular dynamics results show that upon collisions the methanol
clusters shatter, and the shattered fragments quickly diffuse and
recombine to clusters. Desorption involves a series of processes,
including detaching from clusters and desorbing as monomers. At lower
temperatures, methanol forms compact cluster structures while at higher
temperatures, the methanol molecules form layered structures on the
nopinone surface, which are visible in the simulation. Also, the simulation
is used to study the liquid–liquid interaction, where the methanol
clusters completely dissolve in liquid nopinone, showing ideal organic–organic
mixing.
Collapse
Affiliation(s)
- Xiangrui Kong
- Department of Chemistry and Molecular Biology, Atmospheric Science, University of Gothenburg, Gothenburg SE-41296, Sweden
| | - Josip Lovrić
- Department of Chemistry and Molecular Biology, Atmospheric Science, University of Gothenburg, Gothenburg SE-41296, Sweden
| | - Sofia M Johansson
- Department of Chemistry and Molecular Biology, Atmospheric Science, University of Gothenburg, Gothenburg SE-41296, Sweden
| | - Nønne L Prisle
- Center for Atmospheric Research, University of Oulu, Oulu FI-90014, Finland
| | - Jan B C Pettersson
- Department of Chemistry and Molecular Biology, Atmospheric Science, University of Gothenburg, Gothenburg SE-41296, Sweden
| |
Collapse
|