1
|
Schäfer C, Ringström R, Hanrieder J, Rahm M, Albinsson B, Börjesson K. Lowering of the singlet-triplet energy gap via intramolecular exciton-exciton coupling. Nat Commun 2024; 15:8705. [PMID: 39379375 PMCID: PMC11461719 DOI: 10.1038/s41467-024-53122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 09/27/2024] [Indexed: 10/10/2024] Open
Abstract
Organic dyes typically have electronically excited states of both singlet and triplet multiplicity. Controlling the energy difference between these states is a key factor for making efficient organic light emitting diodes and triplet sensitizers, which fulfill essential functions in chemistry, physics, and medicine. Here, we propose a strategy to shift the singlet excited state of a known sensitizer to lower energies without shifting the energy of the triplet state, thus without compromising the ability of the sensitizer to do work. We covalently connect two to four sensitizers in such a way that their transition dipole moments are aligned in a head-to-tail fashion, but, through steric encumbrance, the delocalization is minimized between each moiety. Exciton coupling between the singlet excited states considerably lowers the first excited singlet state energy. However, the energy of the lowest triplet excited state is unperturbed because the exciton coupling strength depends on the magnitude of the transition dipole moments, which for triplets are very small. We expect that the presented strategy of designed intramolecular exciton coupling will be a useful concept in the design of both photosensitizers and emitters for organic light emitting diodes as both benefits from a small singlet-triplet energy gap.
Collapse
Affiliation(s)
- Clara Schäfer
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30, Gothenburg, Sweden
| | - Rasmus Ringström
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal Hospital, House V3, 431 80, Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, London, UK
| | - Martin Rahm
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Bo Albinsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Karl Börjesson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30, Gothenburg, Sweden.
| |
Collapse
|
2
|
Zhang Y, Oberg CP, Hu Y, Xu H, Yan M, Scholes GD, Wang M. Molecular and Supramolecular Materials: From Light-Harvesting to Quantum Information Science and Technology. J Phys Chem Lett 2024:3294-3316. [PMID: 38497707 DOI: 10.1021/acs.jpclett.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The past two decades have witnessed immense advances in quantum information technology (QIT), benefited by advances in physics, chemistry, biology, and materials science and engineering. It is intriguing to consider whether these diverse molecular and supramolecular structures and materials, partially inspired by quantum effects as observed in sophisticated biological systems such as light-harvesting complexes in photosynthesis and the magnetic compass of migratory birds, might play a role in future QIT. If so, how? Herein, we review materials and specify the relationship between structures and quantum properties, and we identify the challenges and limitations that have restricted the intersection of QIT and chemical materials. Examples are broken down into two categories: materials for quantum sensing where nonclassical function is observed on the molecular scale and systems where nonclassical phenomena are present due to intermolecular interactions. We discuss challenges for materials chemistry and make comparisons to related systems found in nature. We conclude that if chemical materials become relevant for QIT, they will enable quite new kinds of properties and functions.
Collapse
Affiliation(s)
- Yipeng Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Catrina P Oberg
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Yue Hu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Hongxue Xu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Mengwen Yan
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Mingfeng Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| |
Collapse
|
3
|
Bužančić Milosavljević M, Bonačić-Koutecký V. Design of J-aggregates-like oligomers built from squaraine dyes exhibiting transparency in the visible regime and high fluorescence quantum yield in the NIR region. Phys Chem Chem Phys 2024; 26:1314-1321. [PMID: 38108190 DOI: 10.1039/d3cp05291e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
New materials for transparent luminescent solar concentrators (TLSCs) are of large interest. Therefore, we investigated the optical properties of J-aggregates-like oligomers (hereinafter referred to as J-aggregates) based on covalently bound squaraine dyes in toluene solvent using DFT and TD-DFT methods. In addition, the rate constants needed for the prediction of fluorescence quantum yield (QY) have been calculated using Fermi's Golden rule and vertical harmonic approximation (VH) for ground and excited states. In the context of QY prediction, different broadening of the lineshape has also been employed. We found that J-aggregates based on squaraine dyes exhibit near-infrared (NIR) selective absorption and emission as well as high fluorescence QY. Comparison of the properties obtained for dimers, trimers and tetramers belonging to two classes (SQA and SQB) of J-aggregates allows us to select the tetramer of SQA J-aggregates as suitable for application. The scaling model for N ≥ 4 monomer subunits supports quantitative findings. Therefore, we propose J-aggregates containing N ≥ 4 subunits of SQA with a central squaric acid ring with two oxygen atoms in toluene solvent as a suitable candidate for TLSC application.
Collapse
Affiliation(s)
- Margarita Bužančić Milosavljević
- Center of Excellence for Science and Technology-Integration of Mediterranean region (STIM), Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia.
| | - Vlasta Bonačić-Koutecký
- Center of Excellence for Science and Technology-Integration of Mediterranean region (STIM), Faculty of Science, University of Split, Ruđera Boškovića 33, 21000 Split, Croatia.
- Interdisciplinary Center for Advanced Science and Technology (ICAST) at University of Split, Meštrovićevo šetalište 45, 21000 Split, Croatia
- Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany.
| |
Collapse
|
4
|
Wang Y, Ren J, Shuai Z. Minimizing non-radiative decay in molecular aggregates through control of excitonic coupling. Nat Commun 2023; 14:5056. [PMID: 37598183 PMCID: PMC10439946 DOI: 10.1038/s41467-023-40716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 08/03/2023] [Indexed: 08/21/2023] Open
Abstract
The widely known "Energy Gap Law" (EGL) predicts a monotonically exponential increase in the non-radiative decay rate (knr) as the energy gap narrows, which hinders the development of near-infrared (NIR) emissive molecular materials. Recently, several experiments proposed that the exciton delocalization in molecular aggregates could counteract EGL to facilitate NIR emission. In this work, the nearly exact time-dependent density matrix renormalization group (TD-DMRG) method is developed to evaluate the non-radiative decay rate for exciton-phonon coupled molecular aggregates. Systematical numerical simulations show, by increasing the excitonic coupling, knr will first decrease, then reach a minimum, and finally start to increase to follow EGL, which is an overall result of two opposite effects of a smaller energy gap and a smaller effective electron-phonon coupling. This anomalous non-monotonic behavior is found robust in a number of models, including dimer, one-dimensional chain, and two-dimensional square lattice. The optimal excitonic coupling strength that gives the minimum knr is about half of the monomer reorganization energy and is also influenced by system size, dimensionality, and temperature.
Collapse
Affiliation(s)
- Yuanheng Wang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084, Beijing, People's Republic of China
| | - Jiajun Ren
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, 100875, Beijing, People's Republic of China.
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, 100084, Beijing, People's Republic of China.
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, People's Republic of China.
| |
Collapse
|
5
|
Jumbo-Nogales A, Krivenkov V, Rusakov K, Urban AS, Grzelczak M, Rakovich YP. Cross Determination of Exciton Coherence Length in J-Aggregates. J Phys Chem Lett 2022; 13:10198-10206. [PMID: 36281996 PMCID: PMC10401724 DOI: 10.1021/acs.jpclett.2c02213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The coherence length of the Frenkel excitons (Ncoh) is one of the most critical parameters governing many key features of supramolecular J-aggregates. Determining experimentally the value of Ncoh is a nontrivial task since it is sensitive to the technique/method applied, causing discrepancies in the literature data even for the same chemical compound and aggregation conditions. By using a combination of different experimental techniques including UV-vis-NIR, fluorescence emission, time-resolved photoluminescence, and transient absorption spectroscopies, we determined Ncoh values for J-aggregates of a cyanine dye. We found that the absorption spectroscopy alone - a widely used technique- fails in determining right value for Ncoh. The correct approach is based on the modification of photoluminescence lifetime and nonlinear response upon aggregation and careful analysis of the Stokes shift and electron-phonon coupling strength. This approach revealed that Ncoh of JC-1 J-aggregates ranges from 3 to 6.
Collapse
Affiliation(s)
- A Jumbo-Nogales
- Centro de Física de Materiales (MPC, CSIC-UPV/EHU), San Sebastián, 20018, Spain
| | - V Krivenkov
- Centro de Física de Materiales (MPC, CSIC-UPV/EHU), San Sebastián, 20018, Spain
- Polymers and Materials: Physics, Chemistry and Technology, Chemistry Faculty, University of the Basque Country (UPV/EHU), San Sebastián, 20018, Spain
| | - K Rusakov
- Faculty of Construction and Environmental Engineering, Warsaw University of Life Sciences, 02-776Warsaw, Poland
| | - A S Urban
- Nanospectroscopy Group, Nano-Institute Munich, Department of Physics, Ludwig-Maximilians-Universität München (LMU), Munich80539, Germany
| | - M Grzelczak
- Centro de Física de Materiales (MPC, CSIC-UPV/EHU), San Sebastián, 20018, Spain
- Donostia International Physics Center (DIPC), San Sebastián, 20018, Spain
| | - Y P Rakovich
- Centro de Física de Materiales (MPC, CSIC-UPV/EHU), San Sebastián, 20018, Spain
- Polymers and Materials: Physics, Chemistry and Technology, Chemistry Faculty, University of the Basque Country (UPV/EHU), San Sebastián, 20018, Spain
- Donostia International Physics Center (DIPC), San Sebastián, 20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| |
Collapse
|
6
|
Patalag LJ, Hoche J, Mitric R, Werz DB, Feringa BL. Transforming Dyes into Fluorophores: Exciton-Induced Emission with Chain-like Oligo-BODIPY Superstructures. Angew Chem Int Ed Engl 2022; 61:e202116834. [PMID: 35244983 PMCID: PMC9310714 DOI: 10.1002/anie.202116834] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Indexed: 11/24/2022]
Abstract
Herein we present a systematic study demonstrating to which extent exciton formation can amplify fluorescence based on a series of ethylene-bridged oligo-BODIPYs. A set of non- and weakly fluorescent BODIPY motifs was selected and transformed into discrete, chain-like oligomers by linkage via a flexible ethylene tether. The prepared superstructures constitute excitonically active entities with non-conjugated, Coulomb-coupled oscillators. The non-radiative deactivation channels of Internal Conversion (IC), also combined with an upstream reductive Photoelectron Transfer (rPET) and Intersystem Crossing (ISC) were addressed at the monomeric state and the evolution of fluorescence and (non-)radiative decay rates studied along the oligomeric series. We demonstrate that a "masked" fluorescence can be fully reactivated irrespective of the imposed conformational rigidity. This work challenges the paradigm that a collective fluorescence enhancement is limited to sterically induced motional restrictions.
Collapse
Affiliation(s)
- Lukas J. Patalag
- University of GroningenStratingh Institute for ChemistryNijenborgh 49747 AGGroningenThe Netherlands
| | - Joscha Hoche
- Universität WürzburgInstitute of Physical and Theoretical ChemistryAm Hubland97074WürzburgGermany
| | - Roland Mitric
- Universität WürzburgInstitute of Physical and Theoretical ChemistryAm Hubland97074WürzburgGermany
| | - Daniel B. Werz
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Ben L. Feringa
- University of GroningenStratingh Institute for ChemistryNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
7
|
Patalag LJ, Hoche J, Mitric R, Werz DB, Feringa BL. Transforming Dyes Into Fluorophores: Exciton‐Induced Emission with Chain‐like Oligo‐BODIPY Superstructures. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lukas J. Patalag
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Joscha Hoche
- Universität Würzburg: Julius-Maximilians-Universitat Wurzburg Institute of Physical and Theoretical Chemistry GERMANY
| | - Roland Mitric
- Universität Würzburg: Julius-Maximilians-Universitat Wurzburg Institute of Theoretical and Physical Chemistry GERMANY
| | - Daniel B. Werz
- TU Braunschweig: Technische Universitat Braunschweig Institute for Organic Chemistry GERMANY
| | - Ben L Feringa
- University of Groningen Stratingh Institute for Chemistry, Faculty of Science and Engineering Nijenborgh 4 9747 AG Groningen NETHERLANDS
| |
Collapse
|
8
|
Friedman HC, Cosco ED, Atallah TL, Jia S, Sletten EM, Caram JR. Establishing design principles for emissive organic SWIR chromophores from energy gap laws. Chem 2021; 7:3359-3376. [PMID: 34901520 PMCID: PMC8664240 DOI: 10.1016/j.chempr.2021.09.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rational design of bright near and shortwave infrared (NIR: 700-1000 SWIR: 1000- 2000 nm) emitters remains an open question with applications spanning imaging and photonics. Combining experiment and theory, we derive an energy gap quantum yield master equation (EQME), describing the fundamental limits in SWIR quantum yields (ϕ F ) for organic chromophores. Evaluating the photophysics of 21 polymethine NIR/SWIR chromophores to parameterize the EQME, we explain the precipitous decline of ϕ F past 900 nm through decreasing radiative rates and increasing nonradiative losses via high frequency vibrations relating to the energy gap. Using the EQME we develop an energy gap independent ϕ F NIR/SWIR chromophore comparison metric. We show electron donating character on polymethine heterocycles results in relative increases in radiative efficiency obscured by a simultaneous redshift. Finally, the EQME yields rational chromophore design insights shown by how deuteration (backed by our experimental results) or molecular aggregation increases SWIR ϕ F .
Collapse
Affiliation(s)
- Hannah C Friedman
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Emily D Cosco
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, California 94305 USA
| | - Timothy L Atallah
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
- Department of Chemistry and Biochemistry, Denison University, 500 West Loop, Granville, Ohio 43023
| | - Shang Jia
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Justin R Caram
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| |
Collapse
|
9
|
Huff JS, Turner DB, Mass OA, Patten LK, Wilson CK, Roy SK, Barclay MS, Yurke B, Knowlton WB, Davis PH, Pensack RD. Excited-State Lifetimes of DNA-Templated Cyanine Dimer, Trimer, and Tetramer Aggregates: The Role of Exciton Delocalization, Dye Separation, and DNA Heterogeneity. J Phys Chem B 2021; 125:10240-10259. [PMID: 34473494 PMCID: PMC8450906 DOI: 10.1021/acs.jpcb.1c04517] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
DNA-templated molecular
(dye) aggregates are a novel class of materials
that have garnered attention in a broad range of areas including light
harvesting, sensing, and computing. Using DNA to template dye aggregation
is attractive due to the relative ease with which DNA nanostructures
can be assembled in solution, the diverse array of nanostructures
that can be assembled, and the ability to precisely position dyes
to within a few Angstroms of one another. These factors, combined
with the programmability of DNA, raise the prospect of designer materials
custom tailored for specific applications. Although considerable progress
has been made in characterizing the optical properties and associated
electronic structures of these materials, less is known about their
excited-state dynamics. For example, little is known about how the
excited-state lifetime, a parameter essential to many applications,
is influenced by structural factors, such as the number of dyes within
the aggregate and their spatial arrangement. In this work, we use
a combination of transient absorption spectroscopy and global target
analysis to measure excited-state lifetimes in a series of DNA-templated
cyanine dye aggregates. Specifically, we investigate six distinct
dimer, trimer, and tetramer aggregates—based on the ubiquitous
cyanine dye Cy5—templated using both duplex and Holliday junction
DNA nanostructures. We find that these DNA-templated Cy5 aggregates
all exhibit significantly reduced excited-state lifetimes, some by
more than 2 orders of magnitude, and observe considerable variation
among the lifetimes. We attribute the reduced excited-state lifetimes
to enhanced nonradiative decay and proceed to discuss various structural
factors, including exciton delocalization, dye separation, and DNA
heterogeneity, that may contribute to the observed reduction and variability
of excited-state lifetimes. Guided by insights from structural modeling,
we find that the reduced lifetimes and enhanced nonradiative decay
are most strongly correlated with the distance between the dyes. These
results inform potential tradeoffs between dye separation, excitonic
coupling strength, and excited-state lifetime that motivate deeper
mechanistic understanding, potentially via further dye and dye template
design.
Collapse
Affiliation(s)
- Jonathan S Huff
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Daniel B Turner
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Olga A Mass
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Lance K Patten
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Christopher K Wilson
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Simon K Roy
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Matthew S Barclay
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States.,Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States.,Department of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Paul H Davis
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Ryan D Pensack
- Micron School of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| |
Collapse
|
10
|
Su BK, Wei YC, Chuang WT, Weng SC, Wang SF, Chen DG, Huang ZX, Chi Y, Chou PT. The Observation of Interchain Motion in Self-Assembled Crystalline Platinum(II) Complexes: An Exquisite Case but By No Means the Only One in Molecular Solids. J Phys Chem Lett 2021; 12:7482-7489. [PMID: 34342467 DOI: 10.1021/acs.jpclett.1c01677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In organic and organometallic solids, upon electronic excitation, most intermolecular structural relaxations follow a pathway along the π-π stacking direction or metal-metal bond with significant coupling strength. Differently, we discovered that the self-assembled platinum(II) complexes, Pt(fppz)2, exhibit an unusual interchain contraction. The ground-state and excited-state multiple local minima were distinguished by temperature-dependent excitation/emission spectra, indicating the existence of multiple local minima. The time-resolved emission decay revealed the excited-state structural relaxation lifetime with τobs = 41 ns at 298 K. Temperature-dependent X-ray diffraction analysis showed that the packing geometries contract 0.6 Å along the interchain direction (a-axis) at 50 K compared to the geometries at 298 K. Such structural displacements render the slow internal conversion rate in the excited states. We thus demonstrate the correlation between the packing geometries and the excited-state dynamics of the self-assembled Pt(II) complexes, shedding light on the unique direction of interchain structural deformation of the molecular aggregates.
Collapse
Affiliation(s)
- Bo-Kang Su
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Chen Wei
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Tsung Chuang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Shih-Chang Weng
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Sheng-Fu Wang
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Deng-Gao Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Zhi-Xuan Huang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yun Chi
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Materials Science and Engineering, Department of Chemistry, and Center of Super-Diamond and Advanced Films, City University of Hong Kong, Kowloon 999077, Hong Kong SAR
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
11
|
Shen CA, Stolte M, Kim JH, Rausch A, Würthner F. Double J-Coupling Strategy for Near Infrared Emitters. J Am Chem Soc 2021; 143:11946-11950. [PMID: 34323483 DOI: 10.1021/jacs.1c05934] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Fluorophores emitting in the near-infrared (NIR) are highly desired for various applications, but increasing nonradiative rates cause severe fluorescence quenching for wavelengths beyond 800 nm. Here, a bis(squaraine) dye is reported that bears two NIR dyes in a head-to-tail chromophore arrangement. This arrangement leads to intramolecular J-type exciton coupling, resulting in an absorption maximum at 961 nm and a fluorescence peak at 971 nm with a quantum yield of 0.33% in chloroform. In less polar toluene, the bis(squaraine) self-assembles into nanofibers, affording another bathochromic shift with an absorption maximum at 1095 nm and a fluorescence peak at 1116 nm originating from intermolecular J-type coupling.
Collapse
Affiliation(s)
- Chia-An Shen
- Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg, Germany
| | - Matthias Stolte
- Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg, Germany.,Center for Nanosystems Chemistry and Bavarian Polymer Institute, Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| | - Jin Hong Kim
- Center for Nanosystems Chemistry and Bavarian Polymer Institute, Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| | - Anja Rausch
- Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, 97074 Würzburg, Germany.,Center for Nanosystems Chemistry and Bavarian Polymer Institute, Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| |
Collapse
|