1
|
Jin B, Guan XL, Yan M, Wang YJ, Wu YB. Planar Hexacoordinate Beryllium: Covalent Bonding Between s-block Metals. Chemistry 2023; 29:e202302672. [PMID: 37695132 DOI: 10.1002/chem.202302672] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
Achieving a planar hypercoordinate arrangement of s-block metals through covalent bonding with ligands is challenging due to the strong ionicity involved. Herein, we report the first case of a neutral binary global minimum containing a planar hexacoordinate beryllium atom. The central Be atom is coordinated by six active Be atoms, the latter in turn are enclosed by an equal number of more electronegative chlorine atoms in the periphery, forming a star-like phBe cluster (Be©Be6 Cl6 ). Importantly, the cluster exhibits dynamically stabilized stemming geometrically from the appropriate matching of metal-ligand size and electronically from adherence to the octet rule as well as possessing a 6σ/2π double aromaticity. Remarkably, energy decomposition analysis-natural orbitals for chemical valence (EDA-NOCV) analysis reveals a significant covalent interaction between the ligand and the central metal beryllium atoms, a fact further supported by a large Wiberg bond index. This cluster is a promising synthetic as its excellent electronic, dynamic and thermodynamic stability.
Collapse
Affiliation(s)
- Bo Jin
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi, 034000, P. R. China
- Institute of Molecular Science, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi, 030006, P. R. China
| | - Xiao-Ling Guan
- Institute of Molecular Science, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi, 030006, P. R. China
| | - Miao Yan
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi, 034000, P. R. China
| | - Ying-Jin Wang
- Department of Chemistry, Xinzhou Normal University, Xinzhou, Shanxi, 034000, P. R. China
| | - Yan-Bo Wu
- Institute of Molecular Science, Shanxi University, 92 Wucheng Road, Taiyuan, Shanxi, 030006, P. R. China
| |
Collapse
|
2
|
Zhang CJ, Ortíz-Chi F, Xu XL, Xu HG, Merino G, Zheng WJ. Reconsidering the Structures of C 2 Al 4 - and C 2 Al 5. Chemistry 2023; 29:e202301338. [PMID: 37498677 DOI: 10.1002/chem.202301338] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023]
Abstract
The study of C2 Al4 -/0 and C2 Al5 -/0 was conducted using anion photoelectron spectroscopy and quantum chemical computations. The present findings reveal that C2 Al4 - has a boat-like structure, with a single C2 unit surrounded by four aluminum atoms. In contrast, the neutral C2 Al4 species adopts a D2h planar structure with two planar tetracoordinate carbon (ptC) units, consistent with previous reports. Furthermore, the global minimum isomer of C2 Al5 - adopts a D3h symmetry, where the C2 unit interacts with five aluminum atoms. It was also found that a lower symmetry structure of C2 Al5 - , where all five aluminum atoms are located on the same side of the C2 unit, albeit slightly higher in energy compared to the D3h structure. These computations show that the D3h structure of C2 Al5 - is highly stable, exhibiting a large HOMO-LUMO gap.
Collapse
Affiliation(s)
- Chao-Jiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Filiberto Ortíz-Chi
- Conahcyt-División Académica de Ciencias Básicas, Universidad Juárez Autónoma de Tabasco, Cunduacán, 86690, Tabasco, México
| | - Xi-Ling Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong-Guang Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gabriel Merino
- Departamento de Física Aplicada, Centro de Investigación y de Estudios Avanzados, Unidad Mérida, km 6 Antigua Carretera a Progreso Apdo. Postal 73, Cordemex, 97310, Mérida, Yucatán, México
| | - Wei-Jun Zheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Li HX, Wang MH, Li Q, Cui ZH. Two-dimensional Be 2Al and Be 2Ga monolayer: anti-van't Hoff/Le Bel planar hexacoordinate bonding and superconductivity. Phys Chem Chem Phys 2023; 25:1105-1113. [PMID: 36514964 DOI: 10.1039/d2cp04595h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Because of the electron deficiency of boron, a triangular network with planar hexacoordination is the most common structural and bonding property for isolated boron clusters and two-dimensional (2D) boron sheets. However, this network is a rule-breaking structure and bonding case for all other main-group elements. Herein, the Be2M (M = Al and Ga) 2D monolayer with P6/mmm space group was found to be the lowest-energy structure with planar hexacoordinate Be/Al/Ga motifs. More interestingly, Be2Al and Be2Ga were observed to be intrinsic phonon-mediated superconductors with a superconducting critical temperature (Tc) of 5.9 and 3.6 K, respectively, where compressive strain could further enhance their Tc. The high thermochemical and kinetic stability of Be2M make a promising candidate for experimental realization, considering its high cohesive energy, absence of soft phonon modes, and good resistance to high temperature. Moreover, the feasibility of directly growing Be2M on the electride Ca2N substrate was further demonstrated, where its intriguing electronic and superconducting properties were well maintained in comparison with the freestanding monolayer. The Be2M monolayer with rule-breaking planar hexacoordinate motifs firmly pushes the ultimate connection of the "anti-van't Hoff/Le Bel" structure with promising physical properties.
Collapse
Affiliation(s)
- Hai-Xia Li
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130023, China.
| | - Meng-Hui Wang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130023, China.
| | - Quan Li
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130023, People's Republic of China
| | - Zhong-Hua Cui
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130023, China. .,Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University, Changchun 130023, China
| |
Collapse
|
4
|
Zhang CJ, Dai WS, Xu HG, Xu XL, Zheng WJ. Structural Evolution of Carbon-Doped Aluminum Clusters Al nC - ( n = 6-15): Anion Photoelectron Spectroscopy and Theoretical Calculations. J Phys Chem A 2022; 126:5621-5631. [PMID: 35972885 DOI: 10.1021/acs.jpca.2c04754] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carbon-doped aluminum cluster anions, AlnC- (n = 6-15), were generated by laser vaporization and investigated by mass-selected anion photoelectron spectroscopy. The geometric structures of AlnC- (n = 6-15) anions were determined by the comparison of theoretical calculations with the experimental results. It is found that the most stable structure of Al6C- is a carbon endohedral triangular prism. The Al7C- anion is a magic cluster with high stability. The structures of Al7-9C- can be viewed as the additional aluminum atoms attached around the triangular prism Al6C-. Two isomers of Al10C- have been detected in the experiments. The most stable one has a planar tetracoordinate carbon structure. The second one derives from Al9C- with the carbon atom located in a pentagonal bipyramid. The Al11C- anion has a bilayer structure composed of one planar tetracoordinate carbon and one aluminum-centered hexagon, in which the major interactions between two layers are multicenter bonds. The structures of Al12-14C- can be viewed as evolving from Al11C- by adding aluminum atoms to interact with the carbon atom. In Al15C-, the carbon atom stays at the surface with a tetracoordinate structure, and an icosahedral Al13 unit can be identified as a part of the geometric structure of Al15C-.
Collapse
Affiliation(s)
- Chao-Jiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen-Shuai Dai
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Guang Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi-Ling Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Jun Zheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Lu SJ. Structural and bonding properties of gas-phase M 4C 6 (M = Cu, Ag, and Au) clusters and their anions. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2110169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Sheng-Jie Lu
- College of Chemistry and Chemical Engineering, Heze University, Heze, People’s Republic of China
- Beijing National Laboratory for Molecular Sciences, Beijing, People’s Republic of China
| |
Collapse
|
6
|
Kalita AJ, Sarmah K, Yashmin F, Borah RR, Baruah I, Deka RP, Guha AK. σ-Aromaticity in planar pentacoordinate aluminium and gallium clusters. Sci Rep 2022; 12:10041. [PMID: 35710864 PMCID: PMC9203769 DOI: 10.1038/s41598-022-14430-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/17/2022] [Indexed: 11/08/2022] Open
Abstract
Planar hypercoordinate structures are gaining immense attention due to the shift from common paradigm. Herein, our high level ab initio calculations predict that planar pentacoordinate aluminium and gallium centres in Cu5Al2+ and Cu5Ga2+ clusters are global minima in their singlet ground states. These clusters are thermodynamically and kinetically very stable. Detailed electronic structure analyses reveal the presence of σ-aromaticity which is the driving force for the stability of the planar form.
Collapse
Affiliation(s)
- Amlan J Kalita
- Department of Chemistry, Advanced Computational Chemistry Centre, Cotton University, Panbazar, Guwahati, Assam, 781001, India
| | - Kangkan Sarmah
- Department of Chemistry, Advanced Computational Chemistry Centre, Cotton University, Panbazar, Guwahati, Assam, 781001, India
| | - Farnaz Yashmin
- Department of Chemistry, Advanced Computational Chemistry Centre, Cotton University, Panbazar, Guwahati, Assam, 781001, India
| | - Ritam R Borah
- Department of Chemistry, Advanced Computational Chemistry Centre, Cotton University, Panbazar, Guwahati, Assam, 781001, India
| | - Indrani Baruah
- Department of Chemistry, Advanced Computational Chemistry Centre, Cotton University, Panbazar, Guwahati, Assam, 781001, India
| | - Rinu P Deka
- Department of Chemistry, Advanced Computational Chemistry Centre, Cotton University, Panbazar, Guwahati, Assam, 781001, India
| | - Ankur K Guha
- Department of Chemistry, Advanced Computational Chemistry Centre, Cotton University, Panbazar, Guwahati, Assam, 781001, India.
| |
Collapse
|
7
|
Zhang CJ, Yan ST, Xu HG, Xu XL, Zheng WJ. Structural and bonding properties of AlnC4−/0 (n = 2–4) clusters: Anion photoelectron spectroscopy and theoretical calculations. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2110185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Chao-jiang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuai-ting Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-guang Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi-ling Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-jun Zheng
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Wang MH, Chen C, Pan S, Cui ZH. Planar hexacoordinate gallium. Chem Sci 2021; 12:15067-15076. [PMID: 34909147 PMCID: PMC8612373 DOI: 10.1039/d1sc05089c] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022] Open
Abstract
We report the first planar hexacoordinate gallium (phGa) center in the global minimum of the GaBe6Au6 + cluster which has a star-like D 6h geometry with 1A1g electronic state, possessing a central gallium atom encompassed by a Be6 hexagon and each Be-Be edge is further capped by an Au atom. The electronic delocalization resulting in double aromaticity (both σ and π) provides electronic stability in the planar form of the GaBe6Au6 + cluster. The high kinetic stability of the title cluster is also understood by Born-Oppenheimer molecular dynamics simulations. The energy decomposition analysis in combination with the 'natural orbitals for chemical valence' theory reveals that the bonding in the GaBe6Au6 + cluster is best expressed as the doublet Ga atom with 4s24p⊥ 1 electronic configuration forming an electron-sharing π bond with the doublet Be6Au6 + moiety followed by Ga(s)→[Be6Au6 +] σ-backdonation and two sets of Ga(p‖)←[Be6Au6 +] σ-donations.
Collapse
Affiliation(s)
- Meng-Hui Wang
- Institute of Atomic and Molecular Physics, Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University Changchun China
| | - Chen Chen
- Institute of Atomic and Molecular Physics, Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University Changchun China
| | - Sudip Pan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University Nanjing China
- Fachbereich Chemie, Philipps-Universität Marburg Hans-Meerwein-Strasse 4 35032 Marburg Germany
| | - Zhong-Hua Cui
- Institute of Atomic and Molecular Physics, Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University Changchun China
- Beijing National Laboratory for Molecular Sciences China
| |
Collapse
|
9
|
Naumkin FY. Shape Symmetrization and IR-Spectral Enhancement of Aluminum Clusters via Doping with a Carbon Core. J Phys Chem A 2021; 125:5738-5744. [PMID: 34180224 DOI: 10.1021/acs.jpca.1c03174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Composite nanosystems are a class of objects with interesting and potentially useful properties. Here we study mixed-composition species representing interfaces at the molecular level between such technologically relevant materials as carbon and aluminum. Specifically, core-shell C8@Aln (n = 16, 18) species and their isomers with the core and relaxed-shell attached outside are investigated at a DFT level in terms of structures and stabilities, charge distributions and polarities, and IR spectra and electron affinities. Among the interesting findings is the possibility of bringing the aluminum cluster into a more symmetric shape (thus making a convenient building block) via insertion of a suitable molecular-carbon skeleton. Another notable feature is the system-selective dependence of polarity on spin multiplicity, suggesting possible molecular-electronic applications. The IR spectra of the composite species are much brighter compared to those of the separated components and are highly focused for the core-shell isomers. A related aspect of interest is the apparent reflections of the system structural details in the IR spectra features (line intensities and separations) via related vibrations, facilitating an experimental analysis of the structure and detection of the species formation and transformation as well as potentially enabling the means of achieving desirable optical characteristics via a geometric design.
Collapse
Affiliation(s)
- Fedor Y Naumkin
- Faculty of Science, Ontario Tech University/UOIT, Oshawa, Ontario L1G 0C5, Canada
| |
Collapse
|