1
|
Wang Y, Hu M, Yue Q, Xiaoqing F, Zhao Y. Insights into ESIPT-induced multicolor fluorescence emission in 2-(2'-hydroxy-5'-bromo)phenylbenzimidazole: a spectroscopic and TDDFT study. RSC Adv 2024; 14:39759-39768. [PMID: 39691234 PMCID: PMC11651046 DOI: 10.1039/d4ra06147k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 11/28/2024] [Indexed: 12/19/2024] Open
Abstract
Although multicolor luminescent materials are widely used in information encryption and decryption based on the excited-state intramolecular proton transfer (ESIPT) reaction, there remains a significant gap in the mechanistic understanding of how solvent and pH conditions influence the ESIPT process. Owing to their ability to avoid self-absorption as well as provide large Stokes' shift and strong emission properties, ESIPT-generated molecules (ESIPT gens) have recently emerged as highly potential fluorophores. Herein, the ESIPT mechanism of bromine-based (2'-hydroxy-5'-bromo)phenylbenzimidazole (HBI-pBr) was investigated in solvents using spectroscopic measurements and time-dependent density functional theory (TD-DFT) calculations. The results indicated that multi-color fluorescence emissions were observed at 470, 458 and 416 nm in CH3OH doped with a base and acid. The potential energy profile rationalized the fluorescence mechanistic insights into the ESIPT reaction and pH-dependent dual response. Notably, nucleus-independent chemical shift (NICS_ZZ) values were applied to reveal the ESIPT process. We leveraged the bromine atom as an electron withdrawing group to manipulate ground and excited-state proton transfer, thereby offering a strategic approach for designing and developing an ESIPT fluorescence sensor for the detection of H+ and OH-. By studying the effect of solvent and pH conditions on HBI-pBr, the multicolor fluorescence mechanism of ESIPT was elucidated, thus laying a solid foundation for the design and synthesis of luminescent materials based on the ESIPT reaction.
Collapse
Affiliation(s)
- Yumeng Wang
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Mingxia Hu
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Qianqian Yue
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Feng Xiaoqing
- School of Pharmacy, School of Medicine, Changzhou University Changzhou 213164 China
| | - Yanying Zhao
- School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Zhejiang Sci-Tech University Hangzhou 310018 China
| |
Collapse
|
2
|
Codescu MA, Kunze T, Weiß M, Brehm M, Kornilov O, Sebastiani D, Nibbering ETJ. Ultrafast Proton Transfer Pathways Mediated by Amphoteric Imidazole. J Phys Chem Lett 2023; 14:4775-4785. [PMID: 37186569 DOI: 10.1021/acs.jpclett.3c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Imidazole, being an amphoteric molecule, can act both as an acid and as a base. This property enables imidazole, as an essential building block, to effectively facilitate proton transport in high-temperature proton exchange membrane fuel cells and in proton channel transmembrane proteins, enabling those systems to exhibit high energy conversion yields and optimal biological function. We explore the amphoteric properties of imidazole by following the proton transfer exchange reaction dynamics with the bifunctional photoacid 7-hydroxyquinoline (7HQ). We show with ultrafast ultraviolet-mid-infrared pump-probe spectroscopy how for imidazole, in contrast to expectations based on textbook knowledge of acid-base reactivity, the preferential reaction pathway is that of an initial proton transfer from 7HQ to imidazole, and only at a later stage a transfer from imidazole to 7HQ, completing the 7HQ tautomerization reaction. An assessment of the molecular distribution functions and first-principles calculations of proton transfer reaction barriers reveal the underlying reasons for our observations.
Collapse
Affiliation(s)
- Marius-Andrei Codescu
- Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, 12489 Berlin, Germany
| | - Thomas Kunze
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Moritz Weiß
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Martin Brehm
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Oleg Kornilov
- Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, 12489 Berlin, Germany
| | - Daniel Sebastiani
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany
| | - Erik T J Nibbering
- Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Strasse 2A, 12489 Berlin, Germany
| |
Collapse
|
3
|
Antalicz B, Versluis J, Bakker HJ. Observing Aqueous Proton-Uptake Reactions Triggered by Light. J Am Chem Soc 2023; 145:6682-6690. [PMID: 36940392 PMCID: PMC10064335 DOI: 10.1021/jacs.2c11441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Proton-transfer reactions in water are essential to chemistry and biology. Earlier studies reported on aqueous proton-transfer mechanisms by observing light-triggered reactions of strong (photo)acids and weak bases. Similar studies on strong (photo)base-weak acid reactions would also be of interest because earlier theoretical works found evidence for mechanistic differences between aqueous H+ and OH- transfer. In this work, we study the reaction of actinoquinol, a water-soluble strong photobase, with the water solvent and the weak acid succinimide. We find that in aqueous solutions containing succinimide, the proton-transfer reaction proceeds via two parallel and competing reaction channels. In the first channel, actinoquinol extracts a proton from water, after which the newly generated hydroxide ion is scavenged by succinimide. In the second channel, succinimide forms a hydrogen-bonded complex with actinoquinol and the proton is transferred directly. Interestingly, we do not observe proton conduction in water-separated actinoquinol-succinimide complexes, which makes the newly studied strong base-weak acid reaction essentially different from previously studied strong acid-weak base reactions.
Collapse
Affiliation(s)
- Balázs Antalicz
- AMOLF, Ultrafast Spectroscopy, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Jan Versluis
- AMOLF, Ultrafast Spectroscopy, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Huib J Bakker
- AMOLF, Ultrafast Spectroscopy, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|
4
|
Effects and Influence of External Electric Fields on the Equilibrium Properties of Tautomeric Molecules. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020695. [PMID: 36677753 PMCID: PMC9865840 DOI: 10.3390/molecules28020695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 01/13/2023]
Abstract
In this review, we have attempted to briefly summarize the influence of an external electric field on an assembly of tautomeric molecules and to what experimentally observable effects this interaction can lead to. We have focused more extensively on the influence of an oriented external electric field (OEEF) on excited-state intramolecular proton transfer (ESIPT) from the studies available to date. The possibilities provided by OEEF for regulating several processes and studying physicochemical processes in tautomers have turned this direction into an attractive area of research due to its numerous applications.
Collapse
|
5
|
Eckert S, Winghart M, Kleine C, Banerjee A, Ekimova M, Ludwig J, Harich J, Fondell M, Mitzner R, Pines E, Huse N, Wernet P, Odelius M, Nibbering ETJ. Electronic Structure Changes of an Aromatic Amine Photoacid along the Förster Cycle. Angew Chem Int Ed Engl 2022; 61:e202200709. [PMID: 35325500 PMCID: PMC9322478 DOI: 10.1002/anie.202200709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 11/15/2022]
Abstract
Photoacids show a strong increase in acidity in the first electronic excited state, enabling real-time studies of proton transfer in acid-base reactions, proton transport in energy storage devices and biomolecular sensor protein systems. Several explanations have been proposed for what determines photoacidity, ranging from variations in solvation free energy to changes in electronic structure occurring along the four stages of the Förster cycle. Here we use picosecond nitrogen K-edge spectroscopy to monitor the electronic structure changes of the proton donating group in a protonated aromatic amine photoacid in solution upon photoexcitation and subsequent proton transfer dynamics. Probing core-to-valence transitions locally at the amine functional group and with orbital specificity, we clearly reveal pronounced electronic structure, dipole moment and energetic changes on the conjugate photobase side. This result paves the way for a detailed electronic structural characterization of the photoacidity phenomenon.
Collapse
Affiliation(s)
- Sebastian Eckert
- Max Born Institut für Nichtlineare Optik und KurzzeitspektroskopieMax Born Strasse 2A12489BerlinGermany
| | - Marc‐Oliver Winghart
- Max Born Institut für Nichtlineare Optik und KurzzeitspektroskopieMax Born Strasse 2A12489BerlinGermany
| | - Carlo Kleine
- Max Born Institut für Nichtlineare Optik und KurzzeitspektroskopieMax Born Strasse 2A12489BerlinGermany
| | - Ambar Banerjee
- Department of PhysicsStockholm UniversityAlbaNova University Center106 91StockholmSweden
| | - Maria Ekimova
- Max Born Institut für Nichtlineare Optik und KurzzeitspektroskopieMax Born Strasse 2A12489BerlinGermany
| | - Jan Ludwig
- Max Born Institut für Nichtlineare Optik und KurzzeitspektroskopieMax Born Strasse 2A12489BerlinGermany
| | - Jessica Harich
- Institute for Nanostructure and Solid State PhysicsCenter for Free-Electron Laser ScienceLuruper Chaussee 14922761HamburgGermany
| | - Mattis Fondell
- Institute for Methods and Instrumentation for Synchrotron Radiation ResearchHelmholtz-Zentrum Berlin für Materialien und Energie GmbHAlbert-Einstein-Strasse 1512489BerlinGermany
| | - Rolf Mitzner
- Institute for Methods and Instrumentation for Synchrotron Radiation ResearchHelmholtz-Zentrum Berlin für Materialien und Energie GmbHAlbert-Einstein-Strasse 1512489BerlinGermany
| | - Ehud Pines
- Department of ChemistryBen Gurion University of the NegevP.O.B. 653Beersheva84105Israel
| | - Nils Huse
- Institute for Nanostructure and Solid State PhysicsCenter for Free-Electron Laser ScienceLuruper Chaussee 14922761HamburgGermany
| | - Philippe Wernet
- Department of Physics and AstronomyUppsala UniversityBox 516 Lägerhyddsvägen 1751 20UppsalaSweden
| | - Michael Odelius
- Department of PhysicsStockholm UniversityAlbaNova University Center106 91StockholmSweden
| | - Erik T. J. Nibbering
- Max Born Institut für Nichtlineare Optik und KurzzeitspektroskopieMax Born Strasse 2A12489BerlinGermany
| |
Collapse
|
6
|
Kim HM, Lee HY, Park JH, Lee SK. Fiber Optic Plasmonic Sensors Based on Nanodome Arrays with Nanogaps. ACS Sens 2022; 7:1451-1457. [PMID: 35522993 DOI: 10.1021/acssensors.2c00154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, a high-performance fiber optic surface plasmon resonance (FO-SPR) sensor using a dome array with nanogaps (DANG) is proposed for label-free real-time detection of biomolecules. A novel and simple method using polymer beads enables high sensitivity by allowing hotspots with nanometer spacing between the Au dome and the surrounding film. The nanodome structure, which comprises a polymer core and a Au shell, induces a localized surface plasmon, expands the sensing area, and extensively enhances the electromagnetic field. The refractive index sensitivity of the FO-SPR sensor with nanostructures, i.e., with nanogaps and nanodomes, was found to be 7.8 times higher than that of the FO-SPR sensor without nanostructures. The proposed sensor achieved a low detection limit of 38 fg/mL while quantifying thyroglobulin antibody-antigen interactions and exhibited excellent selectivity. In addition, it helped detect serum samples with a 103% recovery rate.
Collapse
Affiliation(s)
- Hyeong-Min Kim
- Department of Electronics and Electrical Engineering, Dankook University, Yongin 16890, Republic of Korea
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Jae-Hyoung Park
- Department of Electronics and Electrical Engineering, Dankook University, Yongin 16890, Republic of Korea
| | - Seung-Ki Lee
- Department of Electronics and Electrical Engineering, Dankook University, Yongin 16890, Republic of Korea
| |
Collapse
|
7
|
Nakashima K, Georgiev A, Yordanov D, Matsushima Y, Hirashima SI, Miura T, Antonov L. Solvent-Triggered Long-Range Proton Transport in 7-Hydroxyquinoline Using a Sulfonamide Transporter Group. J Org Chem 2022; 87:6794-6806. [PMID: 35512011 DOI: 10.1021/acs.joc.2c00494] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ability of long-range proton transport by substitution of 7-hydroxyquinoline at the eighth position with sulfonamide and sulfonylhydrazone rotor units to act as a crane-arm has been studied. Different proton transport pathways triggered by different stimuli have been established depending on the structure of the crane-arms. Solvent-driven proton switching from OH to the quinoline nitrogen (Nquin) site, facilitated by a sulfonamide transporter group in polar protic and aprotic solvents, has been confirmed by optical (absorption and fluorescence) and NMR spectroscopies as well as by single-crystal X-ray structure analysis. Photoinduced long-range proton transport to the Nquin site upon 340 nm UV light irradiation has been estimated in sulfonylhydrazone, which is not sensitive to solvent-driven switching. Both compounds have exhibited acid-triggered switching by trifluoroacetic acid due to the formation of a stable six-membered intramolecular hydrogen bonding interaction between the protonated Nquin and crane-arm. The structures of acid-switched form were confirmed by NMR spectroscopy and single-crystal X-ray structure analysis. The behavior of the compounds suggests a big step forward in the advanced proton pump-switching architecture because they cover three distinct driving forces in the switching process: solvent, light, and acid.
Collapse
Affiliation(s)
- Kosuke Nakashima
- Department of Pharmaceutical Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Anton Georgiev
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 8 St. Kliment Ohridski Boulevard, 1756 Sofia, Bulgaria.,Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Boulevard, 1784 Sofia, Bulgaria.,Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev Avenue, Building 109, 1113 Sofia, Bulgaria
| | - Dancho Yordanov
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Boulevard, 1784 Sofia, Bulgaria.,Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Avenue, Building 9, Sofia 1113, Bulgaria
| | - Yasuyuki Matsushima
- Department of Pharmaceutical Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Shin-Ichi Hirashima
- Department of Pharmaceutical Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Tsuyoshi Miura
- Department of Pharmaceutical Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Liudmil Antonov
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 8 St. Kliment Ohridski Boulevard, 1756 Sofia, Bulgaria.,Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Boulevard, 1784 Sofia, Bulgaria
| |
Collapse
|
8
|
Eckert S, Winghart MO, Kleine C, Banerjee A, Ekimova M, Ludwig J, Harich J, Fondell M, Mitzner R, Pines E, Huse N, Wernet P, Odelius M, Nibbering ET. Electronic Structure Changes of an Aromatic Amine Photoacid along the Förster Cycle. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sebastian Eckert
- Max Born Institute for Non-Linear Optics and Short Pulse Spectroscopy: Max-Born-Institut fur Nichtlineare Optik und Kurzzeitspektroskopie C1 GERMANY
| | - Marc-Oliver Winghart
- Max Born Institute for Non-Linear Optics and Short Pulse Spectroscopy: Max-Born-Institut fur Nichtlineare Optik und Kurzzeitspektroskopie C1 GERMANY
| | - Carlo Kleine
- Max Born Institute for Non-Linear Optics and Short Pulse Spectroscopy: Max-Born-Institut fur Nichtlineare Optik und Kurzzeitspektroskopie C1 GERMANY
| | - Ambar Banerjee
- Stockholm University: Stockholms Universitet Chemistry SWEDEN
| | - Maria Ekimova
- Max Born Institute for Non-Linear Optics and Short Pulse Spectroscopy: Max-Born-Institut fur Nichtlineare Optik und Kurzzeitspektroskopie C1 GERMANY
| | - Jan Ludwig
- Max Born Institute for Non-Linear Optics and Short Pulse Spectroscopy: Max-Born-Institut fur Nichtlineare Optik und Kurzzeitspektroskopie C1 GERMANY
| | - Jessica Harich
- Center for Free Electron Laser Science Institute for Nanostructure and Solid State Physics GERMANY
| | - Mattis Fondell
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH: Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH Institute for Methods and Instrumentation for Synchrotron Radiation Research GERMANY
| | - Rolf Mitzner
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH: Helmholtz-Zentrum Berlin fur Materialien und Energie GmbH Institute for Methods and Instrumentation for Synchrotron Radiation Research GERMANY
| | - Ehud Pines
- Ben-Gurion University of the Negev Chemistry ISRAEL
| | - Nils Huse
- Center for Free Electron Laser Science Institute for Nanostructure and Solid State Physics GERMANY
| | | | - Michael Odelius
- Stockholm University: Stockholms Universitet Chemistry SWEDEN
| | - Erik T.J. Nibbering
- Max Born Institut für Nichtlineare Optik und Kurzzeitspektroskopie C1 Max Born Strasse 2A D-12489 Berlin GERMANY
| |
Collapse
|