1
|
Dongmo EG, Haque S, Kreuter F, Wulf T, Jin J, Tonner-Zech R, Heine T, Asmis KR. Direct evidence for ligand-enhanced activity of Cu(i) sites. Chem Sci 2024; 15:14635-14643. [PMID: 39381432 PMCID: PMC11460435 DOI: 10.1039/d4sc04582c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/09/2024] [Indexed: 10/10/2024] Open
Abstract
Little is known about the strong mediating effect of the ligand sphere and the coordination geometry on the strength and isotopologue selectivity of hydrogen adsorption on the undercoordinated copper(i) site. Here, we explore this effect using gas-phase complexes Cu+(H2O)(H2) n (with n ≤ 3) as model systems. Cu+(H2O) attracts dihydrogen (82 kJ mol -1) more strongly than bare Cu+ (64 kJ mol -1) does. Combining experimental and computational methods, we demonstrate a high isotopologue selectivity in dihydrogen binding to Cu+(H2O), which results from a large difference in the adsorption zero-point energies (2.8 kJ mol-1 between D2 and H2, including an anharmonic contribution of 0.4 kJ mol-1). We investigate its origins and the bond strengthening between Cu+ and H2 upon addition of a single H2O ligand. We discuss the role of the environment and the coordination geometry of the adsorption site in achieving a high selectivity and the ramifications for identifying and designing future materials for adsorptive dihydrogen isotopologue separation.
Collapse
Affiliation(s)
- Elvira Gouatieu Dongmo
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig Linnéstr. 2 04103 Leipzig Germany
- Institute of Resource Ecology, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf Permoserstr. 15 04318 Leipzig Germany
| | - Shabnam Haque
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig Linnéstr. 2 04103 Leipzig Germany
| | - Florian Kreuter
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig Linnéstr. 2 04103 Leipzig Germany
| | - Toshiki Wulf
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig Linnéstr. 2 04103 Leipzig Germany
- Faculty of Chemistry and Food Chemistry, School of Science, TU Dresden 01062 Dresden Germany
| | - Jiaye Jin
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig Linnéstr. 2 04103 Leipzig Germany
| | - Ralf Tonner-Zech
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig Linnéstr. 2 04103 Leipzig Germany
| | - Thomas Heine
- Institute of Resource Ecology, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf Permoserstr. 15 04318 Leipzig Germany
- Faculty of Chemistry and Food Chemistry, School of Science, TU Dresden 01062 Dresden Germany
- Department of Chemistry and ibs for Nanomedicine, Yonsei University Seodaemun-gu Seoul 120-749 Republic of Korea
| | - Knut R Asmis
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig Linnéstr. 2 04103 Leipzig Germany
| |
Collapse
|
2
|
Schmahl S, Horn F, Jin J, Westphal H, Belder D, Asmis KR. Online-Monitoring of the Enantiomeric Ratio in Microfluidic Chip Reactors Using Chiral Selector Ion Vibrational Spectroscopy. Chemphyschem 2024; 25:e202300975. [PMID: 38418402 DOI: 10.1002/cphc.202300975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
A novel experimental approach for the rapid online monitoring of the enantiomeric ratio of chiral analytes in solution is presented. The charged analyte is transferred to the gas phase by electrospray. Diastereomeric complexes are formed with a volatile chiral selector in a buffer-gas-filled ion guide held at room temperature, mass-selected, and subsequently spectrally differentiated by cryogenic ion trap vibrational spectroscopy. Based on the spectra of the pure complexes in a small diastereomer-specific spectral range, the composition of diastereomeric mixtures is characterized using the cosine similarity score, from which the enantiomeric ratio in the solution is determined. The method is demonstrated for acidified alanine solutions and using three different chiral selectors (2-butanol, 1-phenylethanol, 1-amino-2-propanol). Among these, 2-butanol is the best choice as a selector for protonated alanine, also because the formation ratio of the corresponding diastereomeric complexes is found to be independent of the nature of the enantiomer. Subsequently, a microfluidic chip is implemented to mix enantiomerically pure alanine solutions continuously and determine the enantiomeric ratio online with minimal sample consumption within one minute and with competitive accuracy.
Collapse
Affiliation(s)
- Sonja Schmahl
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, 04103, Leipzig, Germany
| | - Francine Horn
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, 04103, Leipzig, Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195, Berlin, Germany
| | - Jiaye Jin
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, 04103, Leipzig, Germany
| | - Hannes Westphal
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103, Leipzig, Germany
| | - Detlev Belder
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103, Leipzig, Germany
| | - Knut R Asmis
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstraße 2, 04103, Leipzig, Germany
| |
Collapse
|
3
|
Jin J, Wulf T, Jorewitz M, Heine T, Asmis KR. Vibrational spectroscopy of Cu +(H 2) 4: about anharmonicity and fluxionality. Phys Chem Chem Phys 2023; 25:5262-5270. [PMID: 36723211 DOI: 10.1039/d2cp05802b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The vibrational spectra of the copper(I) cation-dihydrogen complexes Cu+(H2)4, Cu+(D2)4 and Cu+(D2)3H2 are studied using cryogenic ion trap vibrational spectroscopy in combination with quantum chemical calculations. The infrared photodissociation (IRPD) spectra (2500-7300 cm-1) are assigned based on a comparison to IR spectra calculated using vibrational second-order perturbation theory (VPT2). The IRPD spectra exhibit ≈60 cm-1 broad bands that lack rotational resolution, indicative of rather floppy complexes even at an ion trap temperature of 10 K. The observed vibrational features are assigned to the excitations of dihydrogen stretching fundamentals, combination bands of these fundamentals with low energy excitations as well as overtone excitations of a minimum-energy structure with Cs symmetry. The three distinct dihydrogen positions present in the structure can interconvert via pseudorotations with energy barriers less than 10 cm-1, far below the zero-point vibrational energy. Ab initio Born-Oppenheimer molecular dynamics (BOMD) simulations confirm the fluxional behavior of these complexes and yield an upper limit for the timeframe of the pseudorotation on the order of 10 ps. For Cu+(D2)3H2, the H2 and D2 loss channels yield different IRPD spectra indicating non-ergodic behavior.
Collapse
Affiliation(s)
- Jiaye Jin
- Wilhelm-Ostwald-Institut für Physikalische und Theoretisch Chemie, Universität Leipzig, Linnéstr. 2, 04103, Leipzig, Germany.
| | - Toshiki Wulf
- Wilhelm-Ostwald-Institut für Physikalische und Theoretisch Chemie, Universität Leipzig, Linnéstr. 2, 04103, Leipzig, Germany. .,Institute of Resource Ecology, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstr. 15, 04318, Leipzig, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, TU Dresden, 01062, Dresden, Germany.
| | - Marcel Jorewitz
- Wilhelm-Ostwald-Institut für Physikalische und Theoretisch Chemie, Universität Leipzig, Linnéstr. 2, 04103, Leipzig, Germany.
| | - Thomas Heine
- Institute of Resource Ecology, Research Site Leipzig, Helmholtz-Zentrum Dresden-Rossendorf, Permoserstr. 15, 04318, Leipzig, Germany.,Faculty of Chemistry and Food Chemistry, School of Science, TU Dresden, 01062, Dresden, Germany.
| | - Knut R Asmis
- Wilhelm-Ostwald-Institut für Physikalische und Theoretisch Chemie, Universität Leipzig, Linnéstr. 2, 04103, Leipzig, Germany.
| |
Collapse
|
4
|
Chakraborty A, Brumme T, Schmahl S, Weiske H, Baldauf C, Asmis KR. Impact of anion polarizability on ion pairing in microhydrated salt clusters. Chem Sci 2022; 13:13187-13200. [PMID: 36425505 PMCID: PMC9668056 DOI: 10.1039/d2sc03431j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/28/2022] [Indexed: 09/08/2024] Open
Abstract
Despite longstanding interest in the mechanism of salt dissolution in aqueous media, a molecular level understanding remains incomplete. Here, cryogenic ion trap vibrational action spectroscopy is combined with electronic structure calculations to track salt hydration in a gas phase model system one water molecule at a time. The infrared photodissociation spectra of microhydrated lithium dihalide anions [LiXX'(H2O) n ]- (XX' = I2, ClI and Cl2; n = 1-3) in the OH stretching region (3800-2800 cm-1) provide a detailed picture of how anion polarizability influences the competition among ion-ion, ion-water and water-water interactions. While exclusively contact ion pairs are observed for n = 1, the formation of solvent-shared ion pairs, identified by markedly red-shifted OH stretching bands (<3200 cm-1), originating from the bridging water molecules, is favored already for n = 2. For n = 3, Li+ reaches its maximum coordination number of four only in [LiI2(H2O)3]-, in accordance with the hard and soft Lewis acid and base principle. Water-water hydrogen bond formation leads to a different solvent-shared ion pair motif in [LiI2(H2O)3]- and network formation even restabilizes the contact ion pair motif in [LiCl2(H2O)3]-. Structural assignments are exclusively possible after the consideration of anharmonic effects. Molecular dynamics simulations confirm that the significance of large amplitude motion (of the water molecules) increases with increasing anion polarizability and that needs to be considered already at cryogenic temperatures.
Collapse
Affiliation(s)
- Arghya Chakraborty
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig Linnéstrasse 2 D-04103 Leipzig Germany
| | - Thomas Brumme
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig Linnéstrasse 2 D-04103 Leipzig Germany
- Theoretische Chemie, Technische Universität Dresden Dresden Germany
| | - Sonja Schmahl
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig Linnéstrasse 2 D-04103 Leipzig Germany
| | - Hendrik Weiske
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig Linnéstrasse 2 D-04103 Leipzig Germany
| | - Carsten Baldauf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Berlin Germany
| | - Knut R Asmis
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig Linnéstrasse 2 D-04103 Leipzig Germany
| |
Collapse
|
5
|
Di Sabato A, D’Acunzo F, Filippini D, Vetica F, Brasiello A, Corinti D, Bodo E, Michenzi C, Panzetta E, Gentili P. Unusually Chemoselective Photocyclization of 2-(Hydroxyimino)aldehydes to Cyclobutanol Oximes: Synthetic, Stereochemical, and Mechanistic Aspects. J Org Chem 2022; 87:13803-13818. [PMID: 36198009 PMCID: PMC9639046 DOI: 10.1021/acs.joc.2c01503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Photocyclization of carbonyl compounds (known as the Norrish-Yang reaction) to yield cyclobutanols is, in general, accompanied by fragmentation reactions. The latter are predominant in the case of aldehydes so that secondary cyclobutanols are not considered accessible via the straightforward Norrish-Yang reaction. A noteworthy exception has been reported in our laboratory, where cyclobutanols bearing a secondary alcohol function were observed upon UV light irradiation of 2-(hydroxyimino)aldehydes (HIAs). This reaction is here investigated in detail by combining synthesis, spectroscopic data, molecular dynamics, and DFT calculations. The synthetic methodology is generally applicable to a series of HIAs, affording the corresponding cyclobutanol oximes (CBOs) chemoselectively (i.e., without sizable fragmentation side-reactions), diastereoselectively (up to >99:1), and in good to excellent yields (up to 95%). CBO oxime ether derivatives can be purified and diastereomers isolated by standard column chromatography. The mechanistic and stereochemical picture of this photocyclization reaction, as well as of the postcyclization E/Z isomerization of the oxime double bond is completed.
Collapse
Affiliation(s)
- Antonio Di Sabato
- Department
of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy,Institute
of Biological Systems (ISB), Sezione Meccanismi di Reazione, Italian
National Research Council (CNR), c/o Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Francesca D’Acunzo
- Institute
of Biological Systems (ISB), Sezione Meccanismi di Reazione, Italian
National Research Council (CNR), c/o Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Dario Filippini
- Department
of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Fabrizio Vetica
- Department
of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy,
| | - Antonio Brasiello
- Department
of Chemical Engineering Materials Environment, Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy
| | - Davide Corinti
- Department
of Chemistry and Technology of Drugs, Sapienza
University of Rome, Piazzale
Aldo Moro 5, 00185 Rome, Italy
| | - Enrico Bodo
- Department
of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Cinzia Michenzi
- Department
of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Edoardo Panzetta
- Department
of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Patrizia Gentili
- Department
of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy,Institute
of Biological Systems (ISB), Sezione Meccanismi di Reazione, Italian
National Research Council (CNR), c/o Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy,
| |
Collapse
|
6
|
Müller F, Sauer J, Song X, Asmis KR. The Chemical Nature of Ti 4O 10-: Vibrational Predissociation Spectroscopy Combined with Global Structure Optimization. J Phys Chem A 2021; 125:9571-9577. [PMID: 34709822 DOI: 10.1021/acs.jpca.1c05552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The gas-phase infrared spectrum of Ti4O10- is studied in the spectral range from 400 cm-1 to 1250 cm-1 using cryogenic ion trap vibrational spectroscopy, in combination with density functional theory (DFT). The infrared photodissociation (IRPD) spectrum of D2-tagged Ti4O10- provides evidence for a structure of lower symmetry that contains a superoxo group (1121 cm-1) and two terminal Ti=O moieties. DFT combined with a genetic algorithm for global structure optimization predicts two isomers which feature a superoxo group: the Cs symmetric global minimum-energy structure and a similar isomer (C1) that is slightly higher in energy. Coupled cluster calculations confirm the relative stability. Comparison of the harmonic DFT spectra (different functionals) with the IRPD spectrum suggests that both of these isomers contribute. Earlier assignments to the adamantane-like C3v isomer with three terminal Ti-O• - groups in a quartet state are not confirmed. They were based on the infrared multiple photon photodissociation (IRMPD) spectrum of bare Ti4O10- and local DFT structure optimizations.
Collapse
Affiliation(s)
- Fabian Müller
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstr. 2, 04103 Leipzig, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Joachim Sauer
- Institut für Chemie, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
| | - Xiaowei Song
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Knut R Asmis
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Linnéstr. 2, 04103 Leipzig, Germany
| |
Collapse
|
7
|
Machida S, Kida M, Muramatsu S, Hirao T, Haino T, Inokuchi Y. Gas-Phase UV Spectroscopy of Chemical Intermediates Produced in Solution: Oxidation Reactions of Phenylhydrazines by DDQ. J Phys Chem A 2021; 125:6697-6702. [PMID: 34338532 DOI: 10.1021/acs.jpca.1c04669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, we demonstrated cold gas-phase spectroscopy of chemical intermediates produced in solution. Herein, we combined an electrospray ion source with a T-shaped solution mixer for introducing chemical intermediates in solution into the gas phase. Specifically, the oxidation reaction of 2-(4-nitrophenyl)hydrazinecarboxaldehyde (NHCA) by 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) was initiated by mixing the methanol solutions of NHCA and DDQ in the T-shaped mixer, and the chemical species were injected into the vacuum apparatus for ultraviolet photodissociation (UVPD) spectroscopy. A cationic intermediate was strongly observed at m/z 150 in the mass spectrum, and the UVPD spectrum was observed under cold (∼10 K) gas-phase conditions. The UVPD spectrum showed a strong, broad absorption at ∼38,000 cm-1, accompanied by a relatively weak component at ∼34,000 cm-1. These spectral patterns can be ascribed to a diazonium cation intermediate, whose existence has been predicted in a previous study. This report indicates that cold gas-phase UV spectroscopy can be a useful method for identifying the structure of chemical intermediates produced in solution.
Collapse
Affiliation(s)
- Shiori Machida
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Motoki Kida
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Satoru Muramatsu
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Takehiro Hirao
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Yoshiya Inokuchi
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
8
|
Kitamura Y, Muramatsu S, Abe M, Inokuchi Y. Structural Investigation of Photochemical Intermediates in Solution by Cold UV Spectroscopy in the Gas Phase: Photosubstitution of Dicyanobenzenes by Allylsilanes. J Phys Chem A 2021; 125:6238-6245. [PMID: 34240866 DOI: 10.1021/acs.jpca.1c04807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electrospray ion sources with an in-line quartz cell were constructed to produce photochemical intermediates in solution. These ion sources can detect photochemical intermediates having lifetimes longer than a few seconds. Intermediates formed by photosubstitution of 1,4-dicyanobenzene (DCB) by allyltrimethylsilane (AMS) in acetonitrile using a Xe lamp were injected into the mass spectrometer. The cationic intermediate (C11H10N2·H+) was observed at m/z = 171, but no anionic intermediate was found, although C11H9N2- was expected based on prior studies. Theoretical studies suggested that C11H9N2- was simultaneously converted to neutral C11H10N2 and cationic C11H10N2·H+ species, which can be stable intermediates in the photosubstitution reaction. The UV photodissociation (UVPD) spectrum of C11H10N2·H+ under cold (∼10 K) gas-phase conditions determined the conformation of the C11H10N2 unit of the C11H10N2·H+ cation. This report demonstrates that cold gas-phase UV spectroscopy is a prospectively powerful tool for investigation of the electronic and geometric structures of photochemical intermediates produced in solution.
Collapse
Affiliation(s)
- Yuma Kitamura
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Satoru Muramatsu
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Manabu Abe
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Yoshiya Inokuchi
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|